Chris@19: /* Chris@19: * Copyright (c) 2003, 2007-14 Matteo Frigo Chris@19: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology Chris@19: * Chris@19: * This program is free software; you can redistribute it and/or modify Chris@19: * it under the terms of the GNU General Public License as published by Chris@19: * the Free Software Foundation; either version 2 of the License, or Chris@19: * (at your option) any later version. Chris@19: * Chris@19: * This program is distributed in the hope that it will be useful, Chris@19: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@19: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@19: * GNU General Public License for more details. Chris@19: * Chris@19: * You should have received a copy of the GNU General Public License Chris@19: * along with this program; if not, write to the Free Software Chris@19: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@19: * Chris@19: */ Chris@19: Chris@19: Chris@19: /* Compute the complex DFT by combining R2HC RDFTs on the real Chris@19: and imaginary parts. This could be useful for people just wanting Chris@19: to link to the real codelets and not the complex ones. It could Chris@19: also even be faster than the complex algorithms for split (as opposed Chris@19: to interleaved) real/imag complex data. */ Chris@19: Chris@19: #include "rdft.h" Chris@19: #include "dft.h" Chris@19: Chris@19: typedef struct { Chris@19: solver super; Chris@19: } S; Chris@19: Chris@19: typedef struct { Chris@19: plan_dft super; Chris@19: plan *cld; Chris@19: INT ishift, oshift; Chris@19: INT os; Chris@19: INT n; Chris@19: } P; Chris@19: Chris@19: static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) Chris@19: { Chris@19: const P *ego = (const P *) ego_; Chris@19: INT n; Chris@19: Chris@19: UNUSED(ii); Chris@19: Chris@19: { /* transform vector of real & imag parts: */ Chris@19: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@19: cld->apply((plan *) cld, ri + ego->ishift, ro + ego->oshift); Chris@19: } Chris@19: Chris@19: n = ego->n; Chris@19: if (n > 1) { Chris@19: INT i, os = ego->os; Chris@19: for (i = 1; i < (n + 1)/2; ++i) { Chris@19: E rop, iop, iom, rom; Chris@19: rop = ro[os * i]; Chris@19: iop = io[os * i]; Chris@19: rom = ro[os * (n - i)]; Chris@19: iom = io[os * (n - i)]; Chris@19: ro[os * i] = rop - iom; Chris@19: io[os * i] = iop + rom; Chris@19: ro[os * (n - i)] = rop + iom; Chris@19: io[os * (n - i)] = iop - rom; Chris@19: } Chris@19: } Chris@19: } Chris@19: Chris@19: static void awake(plan *ego_, enum wakefulness wakefulness) Chris@19: { Chris@19: P *ego = (P *) ego_; Chris@19: X(plan_awake)(ego->cld, wakefulness); Chris@19: } Chris@19: Chris@19: static void destroy(plan *ego_) Chris@19: { Chris@19: P *ego = (P *) ego_; Chris@19: X(plan_destroy_internal)(ego->cld); Chris@19: } Chris@19: Chris@19: static void print(const plan *ego_, printer *p) Chris@19: { Chris@19: const P *ego = (const P *) ego_; Chris@19: p->print(p, "(dft-r2hc-%D%(%p%))", ego->n, ego->cld); Chris@19: } Chris@19: Chris@19: Chris@19: static int applicable0(const problem *p_) Chris@19: { Chris@19: const problem_dft *p = (const problem_dft *) p_; Chris@19: return ((p->sz->rnk == 1 && p->vecsz->rnk == 0) Chris@19: || (p->sz->rnk == 0 && FINITE_RNK(p->vecsz->rnk)) Chris@19: ); Chris@19: } Chris@19: Chris@19: static int splitp(R *r, R *i, INT n, INT s) Chris@19: { Chris@19: return ((r > i ? (r - i) : (i - r)) >= n * (s > 0 ? s : 0-s)); Chris@19: } Chris@19: Chris@19: static int applicable(const problem *p_, const planner *plnr) Chris@19: { Chris@19: if (!applicable0(p_)) return 0; Chris@19: Chris@19: { Chris@19: const problem_dft *p = (const problem_dft *) p_; Chris@19: Chris@19: /* rank-0 problems are always OK */ Chris@19: if (p->sz->rnk == 0) return 1; Chris@19: Chris@19: /* this solver is ok for split arrays */ Chris@19: if (p->sz->rnk == 1 && Chris@19: splitp(p->ri, p->ii, p->sz->dims[0].n, p->sz->dims[0].is) && Chris@19: splitp(p->ro, p->io, p->sz->dims[0].n, p->sz->dims[0].os)) Chris@19: return 1; Chris@19: Chris@19: return !(NO_DFT_R2HCP(plnr)); Chris@19: } Chris@19: } Chris@19: Chris@19: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) Chris@19: { Chris@19: P *pln; Chris@19: const problem_dft *p; Chris@19: plan *cld; Chris@19: INT ishift = 0, oshift = 0; Chris@19: Chris@19: static const plan_adt padt = { Chris@19: X(dft_solve), awake, print, destroy Chris@19: }; Chris@19: Chris@19: UNUSED(ego_); Chris@19: if (!applicable(p_, plnr)) Chris@19: return (plan *)0; Chris@19: Chris@19: p = (const problem_dft *) p_; Chris@19: Chris@19: { Chris@19: tensor *ri_vec = X(mktensor_1d)(2, p->ii - p->ri, p->io - p->ro); Chris@19: tensor *cld_vec = X(tensor_append)(ri_vec, p->vecsz); Chris@19: int i; Chris@19: for (i = 0; i < cld_vec->rnk; ++i) { /* make all istrides > 0 */ Chris@19: if (cld_vec->dims[i].is < 0) { Chris@19: INT nm1 = cld_vec->dims[i].n - 1; Chris@19: ishift -= nm1 * (cld_vec->dims[i].is *= -1); Chris@19: oshift -= nm1 * (cld_vec->dims[i].os *= -1); Chris@19: } Chris@19: } Chris@19: cld = X(mkplan_d)(plnr, Chris@19: X(mkproblem_rdft_1)(p->sz, cld_vec, Chris@19: p->ri + ishift, Chris@19: p->ro + oshift, R2HC)); Chris@19: X(tensor_destroy2)(ri_vec, cld_vec); Chris@19: } Chris@19: if (!cld) return (plan *)0; Chris@19: Chris@19: pln = MKPLAN_DFT(P, &padt, apply); Chris@19: Chris@19: if (p->sz->rnk == 0) { Chris@19: pln->n = 1; Chris@19: pln->os = 0; Chris@19: } Chris@19: else { Chris@19: pln->n = p->sz->dims[0].n; Chris@19: pln->os = p->sz->dims[0].os; Chris@19: } Chris@19: pln->ishift = ishift; Chris@19: pln->oshift = oshift; Chris@19: Chris@19: pln->cld = cld; Chris@19: Chris@19: pln->super.super.ops = cld->ops; Chris@19: pln->super.super.ops.other += 8 * ((pln->n - 1)/2); Chris@19: pln->super.super.ops.add += 4 * ((pln->n - 1)/2); Chris@19: pln->super.super.ops.other += 1; /* estimator hack for nop plans */ Chris@19: Chris@19: return &(pln->super.super); Chris@19: } Chris@19: Chris@19: /* constructor */ Chris@19: static solver *mksolver(void) Chris@19: { Chris@19: static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; Chris@19: S *slv = MKSOLVER(S, &sadt); Chris@19: return &(slv->super); Chris@19: } Chris@19: Chris@19: void X(dft_r2hc_register)(planner *p) Chris@19: { Chris@19: REGISTER_SOLVER(p, mksolver()); Chris@19: }