annotate fft/fftw/fftw-3.3.4/dft/generic.c @ 40:223f770b5341 kissfft-double tip

Try a double-precision kissfft
author Chris Cannam
date Wed, 07 Sep 2016 10:40:32 +0100
parents 26056e866c29
children
rev   line source
Chris@19 1 /*
Chris@19 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@19 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@19 4 *
Chris@19 5 * This program is free software; you can redistribute it and/or modify
Chris@19 6 * it under the terms of the GNU General Public License as published by
Chris@19 7 * the Free Software Foundation; either version 2 of the License, or
Chris@19 8 * (at your option) any later version.
Chris@19 9 *
Chris@19 10 * This program is distributed in the hope that it will be useful,
Chris@19 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@19 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@19 13 * GNU General Public License for more details.
Chris@19 14 *
Chris@19 15 * You should have received a copy of the GNU General Public License
Chris@19 16 * along with this program; if not, write to the Free Software
Chris@19 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@19 18 *
Chris@19 19 */
Chris@19 20
Chris@19 21 #include "dft.h"
Chris@19 22
Chris@19 23 typedef struct {
Chris@19 24 solver super;
Chris@19 25 } S;
Chris@19 26
Chris@19 27 typedef struct {
Chris@19 28 plan_dft super;
Chris@19 29 twid *td;
Chris@19 30 INT n, is, os;
Chris@19 31 } P;
Chris@19 32
Chris@19 33
Chris@19 34 static void cdot(INT n, const E *x, const R *w,
Chris@19 35 R *or0, R *oi0, R *or1, R *oi1)
Chris@19 36 {
Chris@19 37 INT i;
Chris@19 38
Chris@19 39 E rr = x[0], ri = 0, ir = x[1], ii = 0;
Chris@19 40 x += 2;
Chris@19 41 for (i = 1; i + i < n; ++i) {
Chris@19 42 rr += x[0] * w[0];
Chris@19 43 ir += x[1] * w[0];
Chris@19 44 ri += x[2] * w[1];
Chris@19 45 ii += x[3] * w[1];
Chris@19 46 x += 4; w += 2;
Chris@19 47 }
Chris@19 48 *or0 = rr + ii;
Chris@19 49 *oi0 = ir - ri;
Chris@19 50 *or1 = rr - ii;
Chris@19 51 *oi1 = ir + ri;
Chris@19 52 }
Chris@19 53
Chris@19 54 static void hartley(INT n, const R *xr, const R *xi, INT xs, E *o,
Chris@19 55 R *pr, R *pi)
Chris@19 56 {
Chris@19 57 INT i;
Chris@19 58 E sr, si;
Chris@19 59 o[0] = sr = xr[0]; o[1] = si = xi[0]; o += 2;
Chris@19 60 for (i = 1; i + i < n; ++i) {
Chris@19 61 sr += (o[0] = xr[i * xs] + xr[(n - i) * xs]);
Chris@19 62 si += (o[1] = xi[i * xs] + xi[(n - i) * xs]);
Chris@19 63 o[2] = xr[i * xs] - xr[(n - i) * xs];
Chris@19 64 o[3] = xi[i * xs] - xi[(n - i) * xs];
Chris@19 65 o += 4;
Chris@19 66 }
Chris@19 67 *pr = sr;
Chris@19 68 *pi = si;
Chris@19 69 }
Chris@19 70
Chris@19 71 static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
Chris@19 72 {
Chris@19 73 const P *ego = (const P *) ego_;
Chris@19 74 INT i;
Chris@19 75 INT n = ego->n, is = ego->is, os = ego->os;
Chris@19 76 const R *W = ego->td->W;
Chris@19 77 E *buf;
Chris@19 78 size_t bufsz = n * 2 * sizeof(E);
Chris@19 79
Chris@19 80 BUF_ALLOC(E *, buf, bufsz);
Chris@19 81 hartley(n, ri, ii, is, buf, ro, io);
Chris@19 82
Chris@19 83 for (i = 1; i + i < n; ++i) {
Chris@19 84 cdot(n, buf, W,
Chris@19 85 ro + i * os, io + i * os,
Chris@19 86 ro + (n - i) * os, io + (n - i) * os);
Chris@19 87 W += n - 1;
Chris@19 88 }
Chris@19 89
Chris@19 90 BUF_FREE(buf, bufsz);
Chris@19 91 }
Chris@19 92
Chris@19 93 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@19 94 {
Chris@19 95 P *ego = (P *) ego_;
Chris@19 96 static const tw_instr half_tw[] = {
Chris@19 97 { TW_HALF, 1, 0 },
Chris@19 98 { TW_NEXT, 1, 0 }
Chris@19 99 };
Chris@19 100
Chris@19 101 X(twiddle_awake)(wakefulness, &ego->td, half_tw, ego->n, ego->n,
Chris@19 102 (ego->n - 1) / 2);
Chris@19 103 }
Chris@19 104
Chris@19 105 static void print(const plan *ego_, printer *p)
Chris@19 106 {
Chris@19 107 const P *ego = (const P *) ego_;
Chris@19 108
Chris@19 109 p->print(p, "(dft-generic-%D)", ego->n);
Chris@19 110 }
Chris@19 111
Chris@19 112 static int applicable(const solver *ego, const problem *p_,
Chris@19 113 const planner *plnr)
Chris@19 114 {
Chris@19 115 const problem_dft *p = (const problem_dft *) p_;
Chris@19 116 UNUSED(ego);
Chris@19 117
Chris@19 118 return (1
Chris@19 119 && p->sz->rnk == 1
Chris@19 120 && p->vecsz->rnk == 0
Chris@19 121 && (p->sz->dims[0].n % 2) == 1
Chris@19 122 && CIMPLIES(NO_LARGE_GENERICP(plnr), p->sz->dims[0].n < GENERIC_MIN_BAD)
Chris@19 123 && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > GENERIC_MAX_SLOW)
Chris@19 124 && X(is_prime)(p->sz->dims[0].n)
Chris@19 125 );
Chris@19 126 }
Chris@19 127
Chris@19 128 static plan *mkplan(const solver *ego, const problem *p_, planner *plnr)
Chris@19 129 {
Chris@19 130 const problem_dft *p;
Chris@19 131 P *pln;
Chris@19 132 INT n;
Chris@19 133
Chris@19 134 static const plan_adt padt = {
Chris@19 135 X(dft_solve), awake, print, X(plan_null_destroy)
Chris@19 136 };
Chris@19 137
Chris@19 138 if (!applicable(ego, p_, plnr))
Chris@19 139 return (plan *)0;
Chris@19 140
Chris@19 141 pln = MKPLAN_DFT(P, &padt, apply);
Chris@19 142
Chris@19 143 p = (const problem_dft *) p_;
Chris@19 144 pln->n = n = p->sz->dims[0].n;
Chris@19 145 pln->is = p->sz->dims[0].is;
Chris@19 146 pln->os = p->sz->dims[0].os;
Chris@19 147 pln->td = 0;
Chris@19 148
Chris@19 149 pln->super.super.ops.add = (n-1) * 5;
Chris@19 150 pln->super.super.ops.mul = 0;
Chris@19 151 pln->super.super.ops.fma = (n-1) * (n-1) ;
Chris@19 152 #if 0 /* these are nice pipelined sequential loads and should cost nothing */
Chris@19 153 pln->super.super.ops.other = (n-1)*(4 + 1 + 2 * (n-1)); /* approximate */
Chris@19 154 #endif
Chris@19 155
Chris@19 156 return &(pln->super.super);
Chris@19 157 }
Chris@19 158
Chris@19 159 static solver *mksolver(void)
Chris@19 160 {
Chris@19 161 static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
Chris@19 162 S *slv = MKSOLVER(S, &sadt);
Chris@19 163 return &(slv->super);
Chris@19 164 }
Chris@19 165
Chris@19 166 void X(dft_generic_register)(planner *p)
Chris@19 167 {
Chris@19 168 REGISTER_SOLVER(p, mksolver());
Chris@19 169 }