Chris@19: /* Chris@19: * Copyright (c) 2003, 2007-14 Matteo Frigo Chris@19: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology Chris@19: * Chris@19: * This program is free software; you can redistribute it and/or modify Chris@19: * it under the terms of the GNU General Public License as published by Chris@19: * the Free Software Foundation; either version 2 of the License, or Chris@19: * (at your option) any later version. Chris@19: * Chris@19: * This program is distributed in the hope that it will be useful, Chris@19: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@19: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@19: * GNU General Public License for more details. Chris@19: * Chris@19: * You should have received a copy of the GNU General Public License Chris@19: * along with this program; if not, write to the Free Software Chris@19: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@19: * Chris@19: */ Chris@19: Chris@19: #include "dft.h" Chris@19: Chris@19: typedef struct { Chris@19: solver super; Chris@19: } S; Chris@19: Chris@19: typedef struct { Chris@19: plan_dft super; Chris@19: twid *td; Chris@19: INT n, is, os; Chris@19: } P; Chris@19: Chris@19: Chris@19: static void cdot(INT n, const E *x, const R *w, Chris@19: R *or0, R *oi0, R *or1, R *oi1) Chris@19: { Chris@19: INT i; Chris@19: Chris@19: E rr = x[0], ri = 0, ir = x[1], ii = 0; Chris@19: x += 2; Chris@19: for (i = 1; i + i < n; ++i) { Chris@19: rr += x[0] * w[0]; Chris@19: ir += x[1] * w[0]; Chris@19: ri += x[2] * w[1]; Chris@19: ii += x[3] * w[1]; Chris@19: x += 4; w += 2; Chris@19: } Chris@19: *or0 = rr + ii; Chris@19: *oi0 = ir - ri; Chris@19: *or1 = rr - ii; Chris@19: *oi1 = ir + ri; Chris@19: } Chris@19: Chris@19: static void hartley(INT n, const R *xr, const R *xi, INT xs, E *o, Chris@19: R *pr, R *pi) Chris@19: { Chris@19: INT i; Chris@19: E sr, si; Chris@19: o[0] = sr = xr[0]; o[1] = si = xi[0]; o += 2; Chris@19: for (i = 1; i + i < n; ++i) { Chris@19: sr += (o[0] = xr[i * xs] + xr[(n - i) * xs]); Chris@19: si += (o[1] = xi[i * xs] + xi[(n - i) * xs]); Chris@19: o[2] = xr[i * xs] - xr[(n - i) * xs]; Chris@19: o[3] = xi[i * xs] - xi[(n - i) * xs]; Chris@19: o += 4; Chris@19: } Chris@19: *pr = sr; Chris@19: *pi = si; Chris@19: } Chris@19: Chris@19: static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) Chris@19: { Chris@19: const P *ego = (const P *) ego_; Chris@19: INT i; Chris@19: INT n = ego->n, is = ego->is, os = ego->os; Chris@19: const R *W = ego->td->W; Chris@19: E *buf; Chris@19: size_t bufsz = n * 2 * sizeof(E); Chris@19: Chris@19: BUF_ALLOC(E *, buf, bufsz); Chris@19: hartley(n, ri, ii, is, buf, ro, io); Chris@19: Chris@19: for (i = 1; i + i < n; ++i) { Chris@19: cdot(n, buf, W, Chris@19: ro + i * os, io + i * os, Chris@19: ro + (n - i) * os, io + (n - i) * os); Chris@19: W += n - 1; Chris@19: } Chris@19: Chris@19: BUF_FREE(buf, bufsz); Chris@19: } Chris@19: Chris@19: static void awake(plan *ego_, enum wakefulness wakefulness) Chris@19: { Chris@19: P *ego = (P *) ego_; Chris@19: static const tw_instr half_tw[] = { Chris@19: { TW_HALF, 1, 0 }, Chris@19: { TW_NEXT, 1, 0 } Chris@19: }; Chris@19: Chris@19: X(twiddle_awake)(wakefulness, &ego->td, half_tw, ego->n, ego->n, Chris@19: (ego->n - 1) / 2); Chris@19: } Chris@19: Chris@19: static void print(const plan *ego_, printer *p) Chris@19: { Chris@19: const P *ego = (const P *) ego_; Chris@19: Chris@19: p->print(p, "(dft-generic-%D)", ego->n); Chris@19: } Chris@19: Chris@19: static int applicable(const solver *ego, const problem *p_, Chris@19: const planner *plnr) Chris@19: { Chris@19: const problem_dft *p = (const problem_dft *) p_; Chris@19: UNUSED(ego); Chris@19: Chris@19: return (1 Chris@19: && p->sz->rnk == 1 Chris@19: && p->vecsz->rnk == 0 Chris@19: && (p->sz->dims[0].n % 2) == 1 Chris@19: && CIMPLIES(NO_LARGE_GENERICP(plnr), p->sz->dims[0].n < GENERIC_MIN_BAD) Chris@19: && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > GENERIC_MAX_SLOW) Chris@19: && X(is_prime)(p->sz->dims[0].n) Chris@19: ); Chris@19: } Chris@19: Chris@19: static plan *mkplan(const solver *ego, const problem *p_, planner *plnr) Chris@19: { Chris@19: const problem_dft *p; Chris@19: P *pln; Chris@19: INT n; Chris@19: Chris@19: static const plan_adt padt = { Chris@19: X(dft_solve), awake, print, X(plan_null_destroy) Chris@19: }; Chris@19: Chris@19: if (!applicable(ego, p_, plnr)) Chris@19: return (plan *)0; Chris@19: Chris@19: pln = MKPLAN_DFT(P, &padt, apply); Chris@19: Chris@19: p = (const problem_dft *) p_; Chris@19: pln->n = n = p->sz->dims[0].n; Chris@19: pln->is = p->sz->dims[0].is; Chris@19: pln->os = p->sz->dims[0].os; Chris@19: pln->td = 0; Chris@19: Chris@19: pln->super.super.ops.add = (n-1) * 5; Chris@19: pln->super.super.ops.mul = 0; Chris@19: pln->super.super.ops.fma = (n-1) * (n-1) ; Chris@19: #if 0 /* these are nice pipelined sequential loads and should cost nothing */ Chris@19: pln->super.super.ops.other = (n-1)*(4 + 1 + 2 * (n-1)); /* approximate */ Chris@19: #endif Chris@19: Chris@19: return &(pln->super.super); Chris@19: } Chris@19: Chris@19: static solver *mksolver(void) Chris@19: { Chris@19: static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; Chris@19: S *slv = MKSOLVER(S, &sadt); Chris@19: return &(slv->super); Chris@19: } Chris@19: Chris@19: void X(dft_generic_register)(planner *p) Chris@19: { Chris@19: REGISTER_SOLVER(p, mksolver()); Chris@19: }