Chris@1
|
1 <html>
|
Chris@1
|
2 <body>
|
Chris@1
|
3 <p>If 2150 iterations of real-to-complex FFT of size 2048 takes less than 10 seconds, then we may be able to make a high quality real-time phase vocoder (just).</p>
|
Chris@1
|
4
|
Chris@1
|
5 <p>A phase-vocoder of course must use overlapped
|
Chris@1
|
6 windowed FFT (although you can choose the size, within limits), IFFT,
|
Chris@1
|
7 and cartesian-polar conversion to calculate the phase for the
|
Chris@1
|
8 instantaneous frequency.</p>
|
Chris@1
|
9
|
Chris@1
|
10 <p>A reasonable estimate of CPU cost for the whole thing is somewhere
|
Chris@1
|
11 around 10x the cost of simple non-overlapping short-time forward
|
Chris@1
|
12 Fourier transforms across the signal. </p>
|
Chris@1
|
13
|
Chris@1
|
14 <p>2150 iterations corresponds to 100 seconds of audio non-overlapped at
|
Chris@1
|
15 44.1kHz, so if that takes less than 10 second, then in theory we might
|
Chris@1
|
16 be OK.</p>
|
Chris@1
|
17 <pre>
|
Chris@1
|
18 <script src="nayuki/fft.js"></script>
|
Chris@1
|
19 <script>
|
Chris@1
|
20
|
Chris@1
|
21 /* for a phase vocoder, we probably want 2048-point real-to-complex
|
Chris@1
|
22 * FFTs (if available) */
|
Chris@1
|
23
|
Chris@1
|
24 function inputReals(size) {
|
Chris@1
|
25 var result = new Array(size);
|
Chris@1
|
26 for (var i = 0; i < result.length; i++)
|
Chris@1
|
27 result[i] = (i % 20) / 10.0 - 1.0;
|
Chris@1
|
28 return result;
|
Chris@1
|
29 }
|
Chris@1
|
30
|
Chris@1
|
31 function zeroReals(size) {
|
Chris@1
|
32 var result = new Array(size);
|
Chris@1
|
33 for (var i = 0; i < result.length; i++)
|
Chris@1
|
34 result[i] = 0.0;
|
Chris@1
|
35 return result;
|
Chris@1
|
36 }
|
Chris@1
|
37
|
Chris@1
|
38 function inputReal64s(size) {
|
Chris@1
|
39 var result = new Float64Array(size);
|
Chris@1
|
40 for (var i = 0; i < result.length; i++)
|
Chris@1
|
41 result[i] = (i % 20) / 10.0 - 1.0;
|
Chris@1
|
42 return result;
|
Chris@1
|
43 }
|
Chris@1
|
44
|
Chris@1
|
45 var iterations = 2150;
|
Chris@1
|
46 var size = 2048;
|
Chris@1
|
47
|
Chris@1
|
48 var start = performance.now();
|
Chris@1
|
49
|
Chris@1
|
50 var total = 0.0;
|
Chris@1
|
51
|
Chris@1
|
52 for (var i = 0; i < iterations; ++i) {
|
Chris@1
|
53 var real = inputReals(size);
|
Chris@1
|
54 var imag = zeroReals(size);
|
Chris@1
|
55 transform(real, imag);
|
Chris@1
|
56 for (var j = 0; j < size; ++j) {
|
Chris@1
|
57 total += real[j] + imag[j];
|
Chris@1
|
58 }
|
Chris@1
|
59 }
|
Chris@1
|
60
|
Chris@1
|
61 document.write("total = " + total + "<br>");
|
Chris@1
|
62
|
Chris@1
|
63 var end = performance.now();
|
Chris@1
|
64
|
Chris@1
|
65 document.write("nayuki fft.js: " + iterations + " iterations at size " + size + " took " + (end - start) + "ms (" + (1000.0 / ((end - start) / iterations)) + " iterations/sec)<br>");
|
Chris@1
|
66
|
Chris@1
|
67 </script>
|
Chris@1
|
68 <script src="fft.js/lib/complex.js"></script>
|
Chris@1
|
69 <script>
|
Chris@1
|
70
|
Chris@1
|
71 var fft = new FFT.complex(size, false);
|
Chris@1
|
72
|
Chris@1
|
73 start = performance.now();
|
Chris@1
|
74
|
Chris@1
|
75 total = 0.0;
|
Chris@1
|
76
|
Chris@1
|
77 for (var i = 0; i < iterations; ++i) {
|
Chris@1
|
78 var ri = inputReal64s(size);
|
Chris@1
|
79 var co = new Float64Array(2 * size);
|
Chris@1
|
80 fft.simple(co, ri, 'real');
|
Chris@1
|
81 for (var j = 0; j < 2 * size; ++j) {
|
Chris@1
|
82 total += co[j];
|
Chris@1
|
83 }
|
Chris@1
|
84 }
|
Chris@1
|
85
|
Chris@1
|
86 document.write("total = " + total + "<br>");
|
Chris@1
|
87
|
Chris@1
|
88 var end = performance.now();
|
Chris@1
|
89
|
Chris@1
|
90 document.write("nockert fft.js: " + iterations + " iterations at size " + size + " took " + (end - start) + "ms (" + (1000.0 / ((end - start) / iterations)) + " iterations/sec)<br>");
|
Chris@1
|
91
|
Chris@1
|
92 </script>
|
Chris@1
|
93 </pre>
|
Chris@1
|
94 </body>
|
Chris@1
|
95
|