Mercurial > hg > hybrid-music-recommender-using-content-based-and-social-information
view Code/eda.py @ 15:2e3c57fba632
Convolutional Neural Network code
Scratch for Estimation of Distribution Algorithm
author | Paulo Chiliguano <p.e.chiilguano@se14.qmul.ac.uk> |
---|---|
date | Sat, 25 Jul 2015 21:51:16 +0100 |
parents | |
children | 68b8b088f50a |
line wrap: on
line source
# -*- coding: utf-8 -*- """ Created on Wed Jul 22 17:42:09 2015 @author: paulochiliguano """ import numpy as np from sklearn import mixture #User-item dictionary users = {"Angelica": {"SOAJJPC12AB017D63F": 3.5, "SOAKIXJ12AC3DF7152": 2.0, "SOAKPFH12A8C13BA4A": 4.5, "SOAGTJW12A6701F1F5": 5.0, "SOAKWCK12A8C139F81": 1.5, "SOAKNZI12A58A79CAC": 2.5, "SOAJZEP12A8C14379B": 2.0}, "Bill":{"SOAJJPC12AB017D63F": 2.0, "SOAKIXJ12AC3DF7152": 3.5, "SOAHQFM12A8C134B65": 4.0, "SOAGTJW12A6701F1F5": 2.0, "SOAKWCK12A8C139F81": 3.5, "SOAJZEP12A8C14379B": 3.0}, "Chan": {"SOAJJPC12AB017D63F": 5.0, "SOAKIXJ12AC3DF7152": 1.0, "SOAHQFM12A8C134B65": 1.0, "SOAKPFH12A8C13BA4A": 3.0, "SOAGTJW12A6701F1F5": 5, "SOAKWCK12A8C139F81": 1.0}, "Dan": {"SOAJJPC12AB017D63F": 3.0, "SOAKIXJ12AC3DF7152": 4.0, "SOAHQFM12A8C134B65": 4.5, "SOAGTJW12A6701F1F5": 3.0, "SOAKWCK12A8C139F81": 4.5, "SOAKNZI12A58A79CAC": 4.0, "SOAJZEP12A8C14379B": 2.0}, "Hailey": {"SOAKIXJ12AC3DF7152": 4.0, "SOAHQFM12A8C134B65": 1.0, "SOAKPFH12A8C13BA4A": 4.0, "SOAKNZI12A58A79CAC": 4.0, "SOAJZEP12A8C14379B": 1.0}, "Jordyn": {"SOAKIXJ12AC3DF7152": 4.5, "SOAHQFM12A8C134B65": 4.0, "SOAKPFH12A8C13BA4A": 5.0, "SOAGTJW12A6701F1F5": 5.0, "SOAKWCK12A8C139F81": 4.5, "SOAKNZI12A58A79CAC": 4.0, "SOAJZEP12A8C14379B": 4.0}, "Sam": {"SOAJJPC12AB017D63F": 5.0, "SOAKIXJ12AC3DF7152": 2.0, "SOAKPFH12A8C13BA4A": 3.0, "SOAGTJW12A6701F1F5": 5.0, "SOAKWCK12A8C139F81": 4.0, "SOAKNZI12A58A79CAC": 5.0}, "Veronica": {"SOAJJPC12AB017D63F": 3.0, "SOAKPFH12A8C13BA4A": 5.0, "SOAGTJW12A6701F1F5": 4.0, "SOAKWCK12A8C139F81": 2.5, "SOAKNZI12A58A79CAC": 3.0} } items = {"SOAJJPC12AB017D63F": [2.5, 4, 3.5, 3, 5, 4, 1], "SOAKIXJ12AC3DF7152": [2, 5, 5, 3, 2, 1, 1], "SOAKPFH12A8C13BA4A": [1, 5, 4, 2, 4, 1, 1], "SOAGTJW12A6701F1F5": [4, 5, 4, 4, 1, 5, 1], "SOAKWCK12A8C139F81": [1, 4, 5, 3.5, 5, 1, 1], "SOAKNZI12A58A79CAC": [1, 5, 3.5, 3, 4, 5, 1], "SOAJZEP12A8C14379B": [5, 5, 4, 2, 1, 1, 1], "SOAHQFM12A8C134B65": [2.5, 4, 4, 1, 1, 1, 1]} profile = {"Profile0": [2.5, 4, 3.5, 3, 5, 4, 1], "Profile1": [2.5, 4, 3.5, 3, 5, 4, 1], "Profile2": [2.5, 4, 3.5, 3, 5, 4, 1], "Profile3": [2.5, 4, 3.5, 3, 5, 4, 1], "Profile4": [2.5, 4, 3.5, 3, 5, 4, 1], "Profile5": [2.5, 4, 3.5, 3, 5, 4, 1], "Profile6": [2.5, 4, 3.5, 3, 5, 4, 1], "Profile7": [2.5, 4, 3.5, 3, 5, 4, 1]} np.random.seed(1) g = mixture.GMM(n_components=7) # Generate random observations with two modes centered on 0 # and 10 to use for training. obs = np.concatenate((np.random.randn(100, 1), 10 + np.random.randn(300, 1))) g.fit(obs) np.round(g.weights_, 2) np.round(g.means_, 2) np.round(g.covars_, 2) g.predict([[0], [2], [9], [10]]) np.round(g.score([[0], [2], [9], [10]]), 2) # Refit the model on new data (initial parameters remain the # same), this time with an even split between the two modes. g.fit(20 * [[0]] + 20 * [[10]]) np.round(g.weights_, 2)