Mercurial > hg > hybrid-music-recommender-using-content-based-and-social-information
comparison Code/eda.py @ 15:2e3c57fba632
Convolutional Neural Network code
Scratch for Estimation of Distribution Algorithm
author | Paulo Chiliguano <p.e.chiilguano@se14.qmul.ac.uk> |
---|---|
date | Sat, 25 Jul 2015 21:51:16 +0100 |
parents | |
children | 68b8b088f50a |
comparison
equal
deleted
inserted
replaced
14:c63dac455296 | 15:2e3c57fba632 |
---|---|
1 # -*- coding: utf-8 -*- | |
2 """ | |
3 Created on Wed Jul 22 17:42:09 2015 | |
4 | |
5 @author: paulochiliguano | |
6 """ | |
7 | |
8 import numpy as np | |
9 from sklearn import mixture | |
10 | |
11 #User-item dictionary | |
12 users = {"Angelica": {"SOAJJPC12AB017D63F": 3.5, "SOAKIXJ12AC3DF7152": 2.0, | |
13 "SOAKPFH12A8C13BA4A": 4.5, "SOAGTJW12A6701F1F5": 5.0, | |
14 "SOAKWCK12A8C139F81": 1.5, "SOAKNZI12A58A79CAC": 2.5, | |
15 "SOAJZEP12A8C14379B": 2.0}, | |
16 "Bill":{"SOAJJPC12AB017D63F": 2.0, "SOAKIXJ12AC3DF7152": 3.5, | |
17 "SOAHQFM12A8C134B65": 4.0, "SOAGTJW12A6701F1F5": 2.0, | |
18 "SOAKWCK12A8C139F81": 3.5, "SOAJZEP12A8C14379B": 3.0}, | |
19 "Chan": {"SOAJJPC12AB017D63F": 5.0, "SOAKIXJ12AC3DF7152": 1.0, | |
20 "SOAHQFM12A8C134B65": 1.0, "SOAKPFH12A8C13BA4A": 3.0, | |
21 "SOAGTJW12A6701F1F5": 5, "SOAKWCK12A8C139F81": 1.0}, | |
22 "Dan": {"SOAJJPC12AB017D63F": 3.0, "SOAKIXJ12AC3DF7152": 4.0, | |
23 "SOAHQFM12A8C134B65": 4.5, "SOAGTJW12A6701F1F5": 3.0, | |
24 "SOAKWCK12A8C139F81": 4.5, "SOAKNZI12A58A79CAC": 4.0, | |
25 "SOAJZEP12A8C14379B": 2.0}, | |
26 "Hailey": {"SOAKIXJ12AC3DF7152": 4.0, "SOAHQFM12A8C134B65": 1.0, | |
27 "SOAKPFH12A8C13BA4A": 4.0, "SOAKNZI12A58A79CAC": 4.0, | |
28 "SOAJZEP12A8C14379B": 1.0}, | |
29 "Jordyn": {"SOAKIXJ12AC3DF7152": 4.5, "SOAHQFM12A8C134B65": 4.0, | |
30 "SOAKPFH12A8C13BA4A": 5.0, "SOAGTJW12A6701F1F5": 5.0, | |
31 "SOAKWCK12A8C139F81": 4.5, "SOAKNZI12A58A79CAC": 4.0, | |
32 "SOAJZEP12A8C14379B": 4.0}, | |
33 "Sam": {"SOAJJPC12AB017D63F": 5.0, "SOAKIXJ12AC3DF7152": 2.0, | |
34 "SOAKPFH12A8C13BA4A": 3.0, "SOAGTJW12A6701F1F5": 5.0, | |
35 "SOAKWCK12A8C139F81": 4.0, "SOAKNZI12A58A79CAC": 5.0}, | |
36 "Veronica": {"SOAJJPC12AB017D63F": 3.0, "SOAKPFH12A8C13BA4A": 5.0, | |
37 "SOAGTJW12A6701F1F5": 4.0, "SOAKWCK12A8C139F81": 2.5, | |
38 "SOAKNZI12A58A79CAC": 3.0} | |
39 } | |
40 | |
41 items = {"SOAJJPC12AB017D63F": [2.5, 4, 3.5, 3, 5, 4, 1], | |
42 "SOAKIXJ12AC3DF7152": [2, 5, 5, 3, 2, 1, 1], | |
43 "SOAKPFH12A8C13BA4A": [1, 5, 4, 2, 4, 1, 1], | |
44 "SOAGTJW12A6701F1F5": [4, 5, 4, 4, 1, 5, 1], | |
45 "SOAKWCK12A8C139F81": [1, 4, 5, 3.5, 5, 1, 1], | |
46 "SOAKNZI12A58A79CAC": [1, 5, 3.5, 3, 4, 5, 1], | |
47 "SOAJZEP12A8C14379B": [5, 5, 4, 2, 1, 1, 1], | |
48 "SOAHQFM12A8C134B65": [2.5, 4, 4, 1, 1, 1, 1]} | |
49 | |
50 profile = {"Profile0": [2.5, 4, 3.5, 3, 5, 4, 1], | |
51 "Profile1": [2.5, 4, 3.5, 3, 5, 4, 1], | |
52 "Profile2": [2.5, 4, 3.5, 3, 5, 4, 1], | |
53 "Profile3": [2.5, 4, 3.5, 3, 5, 4, 1], | |
54 "Profile4": [2.5, 4, 3.5, 3, 5, 4, 1], | |
55 "Profile5": [2.5, 4, 3.5, 3, 5, 4, 1], | |
56 "Profile6": [2.5, 4, 3.5, 3, 5, 4, 1], | |
57 "Profile7": [2.5, 4, 3.5, 3, 5, 4, 1]} | |
58 | |
59 | |
60 | |
61 | |
62 np.random.seed(1) | |
63 g = mixture.GMM(n_components=7) | |
64 # Generate random observations with two modes centered on 0 | |
65 # and 10 to use for training. | |
66 obs = np.concatenate((np.random.randn(100, 1), 10 + np.random.randn(300, 1))) | |
67 g.fit(obs) | |
68 np.round(g.weights_, 2) | |
69 np.round(g.means_, 2) | |
70 np.round(g.covars_, 2) | |
71 g.predict([[0], [2], [9], [10]]) | |
72 np.round(g.score([[0], [2], [9], [10]]), 2) | |
73 # Refit the model on new data (initial parameters remain the | |
74 # same), this time with an even split between the two modes. | |
75 g.fit(20 * [[0]] + 20 * [[10]]) | |
76 np.round(g.weights_, 2) |