p@30
|
1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
p@30
|
2 % Beamer Presentation
|
p@30
|
3 % LaTeX Template
|
p@30
|
4 % Version 1.0 (10/11/12)
|
p@30
|
5 %
|
p@30
|
6 % This template has been downloaded from:
|
p@30
|
7 % http://www.LaTeXTemplates.com
|
p@30
|
8 %
|
p@30
|
9 % License:
|
p@30
|
10 % CC BY-NC-SA 3.0 (http://creativecommons.org/licenses/by-nc-sa/3.0/)
|
p@30
|
11 %
|
p@30
|
12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
p@30
|
13
|
p@30
|
14 %----------------------------------------------------------------------------------------
|
p@30
|
15 % PACKAGES AND THEMES
|
p@30
|
16 %----------------------------------------------------------------------------------------
|
p@30
|
17
|
p@27
|
18 \documentclass{beamer}
|
p@27
|
19
|
p@30
|
20 \mode<presentation> {
|
p@27
|
21
|
p@30
|
22 % The Beamer class comes with a number of default slide themes
|
p@30
|
23 % which change the colors and layouts of slides. Below this is a list
|
p@30
|
24 % of all the themes, uncomment each in turn to see what they look like.
|
p@30
|
25
|
p@30
|
26 %\usetheme{default}
|
p@30
|
27 %\usetheme{AnnArbor}
|
p@30
|
28 %\usetheme{Antibes}
|
p@30
|
29 %\usetheme{Bergen}
|
p@30
|
30 %\usetheme{Berkeley}
|
p@30
|
31 %\usetheme{Berlin}
|
p@30
|
32 %\usetheme{Boadilla}
|
p@30
|
33 %\usetheme{CambridgeUS}
|
p@30
|
34 %\usetheme{Copenhagen}
|
p@30
|
35 %\usetheme{Darmstadt}
|
p@30
|
36 %\usetheme{Dresden}
|
p@30
|
37 %\usetheme{Frankfurt}
|
p@30
|
38 %\usetheme{Goettingen}
|
p@30
|
39 %\usetheme{Hannover}
|
p@30
|
40 %\usetheme{Ilmenau}
|
p@30
|
41 %\usetheme{JuanLesPins}
|
p@30
|
42 %\usetheme{Luebeck}
|
p@30
|
43 \usetheme{Madrid}
|
p@30
|
44 %\usetheme{Malmoe}
|
p@30
|
45 %\usetheme{Marburg}
|
p@30
|
46 %\usetheme{Montpellier}
|
p@30
|
47 %\usetheme{PaloAlto}
|
p@30
|
48 %\usetheme{Pittsburgh}
|
p@30
|
49 %\usetheme{Rochester}
|
p@30
|
50 %\usetheme{Singapore}
|
p@30
|
51 %\usetheme{Szeged}
|
p@30
|
52 %\usetheme{Warsaw}
|
p@30
|
53
|
p@30
|
54 % As well as themes, the Beamer class has a number of color themes
|
p@30
|
55 % for any slide theme. Uncomment each of these in turn to see how it
|
p@30
|
56 % changes the colors of your current slide theme.
|
p@30
|
57
|
p@30
|
58 %\usecolortheme{albatross}
|
p@30
|
59 %\usecolortheme{beaver}
|
p@30
|
60 %\usecolortheme{beetle}
|
p@30
|
61 %\usecolortheme{crane}
|
p@30
|
62 %\usecolortheme{dolphin}
|
p@30
|
63 %\usecolortheme{dove}
|
p@30
|
64 %\usecolortheme{fly}
|
p@30
|
65 %\usecolortheme{lily}
|
p@30
|
66 %\usecolortheme{orchid}
|
p@30
|
67 %\usecolortheme{rose}
|
p@30
|
68 %\usecolortheme{seagull}
|
p@30
|
69 \usecolortheme{seahorse}
|
p@30
|
70 %\usecolortheme{whale}
|
p@30
|
71 %\usecolortheme{wolverine}
|
p@30
|
72
|
p@30
|
73 %\setbeamertemplate{footline} % To remove the footer line in all slides uncomment this line
|
p@30
|
74 %\setbeamertemplate{footline}[page number] % To replace the footer line in all slides with a simple slide count uncomment this line
|
p@30
|
75
|
p@30
|
76 \setbeamertemplate{navigation symbols}{} % To remove the navigation symbols from the bottom of all slides uncomment this line
|
p@30
|
77 }
|
p@30
|
78
|
p@30
|
79 \usepackage{graphicx} % Allows including images
|
p@30
|
80 \usepackage{booktabs} % Allows the use of \toprule, \midrule and \bottomrule in tables
|
p@30
|
81
|
p@30
|
82 %----------------------------------------------------------------------------------------
|
p@30
|
83 % TITLE PAGE
|
p@30
|
84 %----------------------------------------------------------------------------------------
|
p@30
|
85
|
p@30
|
86 \title[Hybrid music recommender]{Hybrid music recommender using content-based and social information} % The short title appears at the bottom of every slide, the full title is only on the title page
|
p@30
|
87
|
p@30
|
88 \author{Paulo Esteban Chiliguano Torres} % Your name
|
p@30
|
89 \institute[QMUL] % Your institution as it will appear on the bottom of every slide, may be shorthand to save space
|
p@30
|
90 {School of Electrical Engineering and Computer Science\\
|
p@30
|
91 Queen Mary University of London \\ % Your institution for the title page
|
p@30
|
92 \medskip
|
p@30
|
93 %\textit{john@smith.com} % Your email address
|
p@30
|
94 }
|
p@30
|
95 \date{September 1st, 2015} % Date, can be changed to a custom date
|
p@27
|
96
|
p@27
|
97 \begin{document}
|
p@27
|
98
|
p@27
|
99 \begin{frame}
|
p@30
|
100 \titlepage % Print the title page as the first slide
|
p@27
|
101 \end{frame}
|
p@27
|
102
|
p@30
|
103 \begin{frame}
|
p@30
|
104 \frametitle{Outline} % Table of contents slide, comment this block out to remove it
|
p@30
|
105 \tableofcontents % Throughout your presentation, if you choose to use \section{} and \subsection{} commands, these will automatically be printed on this slide as an outline of your presentation
|
p@29
|
106 \end{frame}
|
p@27
|
107
|
p@30
|
108 %----------------------------------------------------------------------------------------
|
p@30
|
109 % PRESENTATION SLIDES
|
p@30
|
110 %----------------------------------------------------------------------------------------
|
p@27
|
111
|
p@27
|
112
|
p@30
|
113 \section{Motivation}
|
p@30
|
114 \begin{frame}
|
p@30
|
115 \textit{''Music doesn't have any special meaning; it depends what it's attached to.''} (Oliver Sacks 1933-2015)
|
p@30
|
116 \end{frame}
|
p@30
|
117 \begin{frame}
|
p@30
|
118 \frametitle{Aim and Motivations}
|
p@30
|
119 Design and implement a hybrid music recommender to mitigate the cold-start problem in a content-based recommendation strategy.
|
p@27
|
120 \begin{itemize}
|
p@30
|
121 \pause \item Implement a convolutional deep neural network (CDNN) to obtain high-level representation of an audio file.
|
p@30
|
122 \pause \item Investigate Estimation of Distribution Algorithms (EDAs) to model user profiles in terms of probabilities of music genres preferences.
|
p@30
|
123 \end{itemize}
|
p@30
|
124 \end{frame}
|
p@30
|
125
|
p@30
|
126
|
p@30
|
127 \subsection{Related work}
|
p@30
|
128
|
p@30
|
129 \begin{frame}
|
p@30
|
130 \frametitle{Recommender Systems}
|
p@30
|
131 Hybrid music recommender (Yoshii et al. 2008)
|
p@30
|
132 \begin{itemize}
|
p@30
|
133 \item ``bag of timbres'' to represent acoustic features.
|
p@30
|
134 \item Three-way aspect model: ``unobserved'' genre
|
p@30
|
135 \end{itemize}
|
p@30
|
136 \pause Deep content-based music recommendation (Oord et al. 2013)
|
p@30
|
137 \begin{itemize}
|
p@30
|
138 \item CDNN for latent vector representation
|
p@30
|
139 \item Million Song Dataset
|
p@30
|
140 \end{itemize}
|
p@30
|
141 \pause Hybrid recommender based on EDA (Liang, T. et al. 2014)
|
p@30
|
142 \begin{itemize}
|
p@30
|
143 \item TF-IDF for item attributes
|
p@30
|
144 \item Movielens dataset
|
p@30
|
145 \item Permutation EDA
|
p@27
|
146 \end{itemize}
|
p@27
|
147
|
p@27
|
148
|
p@27
|
149
|
p@30
|
150 %The following two theorems might be important to recall
|
p@30
|
151 %\begin{theorem}[Theorem 1]
|
p@30
|
152 %The HVG associated to a bi-infinite series of i.i.d. random variables extracted from a continuous probability distribution $f(x)$ is
|
p@30
|
153 %$P(k)=\bigg (\frac{1}{3}\bigg ) \bigg (\frac{2}{3}\bigg )^{k-2}; \ k=2,3,\dots \ \ \ \ \ \ (\forall f)$
|
p@30
|
154 %\end{theorem}
|
p@30
|
155 %\begin{theorem}[Theorem 2]
|
p@30
|
156 %\The DHVG associated to a bi-infinite series of i.i.d. random variables extracted from a continuous probability distribution $f(x)$ is
|
p@30
|
157 %$P(k)=\bigg (\frac{1}{2}\bigg )^k; \ k=1,2,3,\dots \ \ \ \ \ \ (\forall f)$
|
p@30
|
158 %\end{theorem}
|
p@27
|
159 \end{frame}
|
p@27
|
160
|
p@30
|
161 \section{Hybrid music recommendation}
|
p@30
|
162 \subsection{Design}
|
p@30
|
163 \begin{frame}
|
p@30
|
164 \frametitle{Hybrid music recommender design}
|
p@30
|
165 Fundamental tasks:
|
p@27
|
166 \begin{itemize}
|
p@30
|
167 \item User modelling
|
p@30
|
168 \item Information filtering
|
p@30
|
169 \end{itemize}
|
p@30
|
170 Required data:
|
p@30
|
171 \begin{itemize}
|
p@30
|
172 \item User-item matrix: Taste profile dataset (53 users)
|
p@30
|
173 \item Audio clips: 7digital UK catalogue (640 clips)
|
p@30
|
174 \end{itemize}
|
p@30
|
175 Song representation:
|
p@30
|
176 \begin{itemize}
|
p@30
|
177 \item 10-dimensional vector
|
p@30
|
178 \item Probability to belong to a music genre
|
p@27
|
179 \end{itemize}
|
p@27
|
180
|
p@27
|
181
|
p@30
|
182 %\begin{example}[Theorem Slide Code]
|
p@30
|
183 %Blablabla
|
p@30
|
184 %\end{example}
|
p@30
|
185 %And then you might be able to state the main conjecture you will solve
|
p@27
|
186 \end{frame}
|
p@27
|
187
|
p@30
|
188 \subsection{Architecture}
|
p@30
|
189 \begin{frame}
|
p@30
|
190 \frametitle{Hybrid music recommender approach}
|
p@30
|
191 \begin{itemize}
|
p@30
|
192 \item Feature augmentation
|
p@30
|
193 \item Meta-level
|
p@30
|
194 \end{itemize}
|
p@30
|
195 \begin{figure}[ht!]
|
p@30
|
196 \centering
|
p@30
|
197 \includegraphics[width=\textwidth]{hybrid.png}
|
p@30
|
198 %\caption{Diagram of the cleaning process of the Taste Profile subset}
|
p@30
|
199 %\label{fig:taste_profile}
|
p@30
|
200 \end{figure}
|
p@27
|
201 \end{frame}
|
p@27
|
202
|
p@30
|
203 \subsection{Item and user representation}
|
p@29
|
204 \begin{frame}
|
p@30
|
205 \frametitle{Probability of music genre}
|
p@30
|
206 %\begin{itemize}
|
p@30
|
207 %\item Feature augmentation
|
p@30
|
208 %\item Meta-level
|
p@30
|
209 %\end{itemize}
|
p@30
|
210 \begin{figure}[ht!]
|
p@30
|
211 \centering
|
p@30
|
212 \includegraphics[width=\textwidth]{CDNN.png}
|
p@30
|
213 \caption{CDNN for music genre classification (Kereliuk et al. 2015)}
|
p@30
|
214 %\label{fig:taste_profile}
|
p@30
|
215 \end{figure}
|
p@29
|
216 \end{frame}
|
p@29
|
217
|
p@30
|
218 \begin{frame}
|
p@30
|
219 \frametitle{Estimation of Distribution Algorithms (EDAs)}
|
p@30
|
220 \begin{figure}[ht!]
|
p@30
|
221 \centering
|
p@30
|
222 \includegraphics[width=0.5\textwidth]{eda.png}
|
p@30
|
223 \caption{Flowchart for EDA (Ding et al. 2015)}
|
p@30
|
224 %\label{fig:taste_profile}
|
p@30
|
225 \end{figure}
|
p@30
|
226 \end{frame}
|
p@30
|
227 \begin{frame}
|
p@30
|
228 \frametitle{User profile modelling}
|
p@30
|
229 With permutation EDA:
|
p@30
|
230 \begin{itemize}
|
p@30
|
231 \item 10 tags (GTZAN) equivalent to keywords
|
p@30
|
232 \item 50 weights: evenly spaced over the inverval $[0.1,\ldots,0.9]$
|
p@30
|
233 \end{itemize}
|
p@30
|
234 \frametitle{User profile modelling}
|
p@30
|
235 With continuous EDA:
|
p@30
|
236 \begin{itemize}
|
p@30
|
237 \item Each genre considered as a dimension
|
p@30
|
238 \item Compute mean and covariance for each dimension along individuals
|
p@30
|
239 \item Sample from normal distribution
|
p@30
|
240 \end{itemize}
|
p@30
|
241 \end{frame}
|
p@30
|
242
|
p@30
|
243 \section{Results}
|
p@30
|
244 \subsection{Music genre classifier}
|
p@30
|
245 \begin{frame}
|
p@30
|
246 \frametitle{Genre classification}
|
p@30
|
247 \begin{table}[h!]
|
p@30
|
248 \caption{Genre classification results} % title of Table
|
p@30
|
249 \centering % used for centering table
|
p@30
|
250 \begin{tabular}{c c c c c} % centered columns (4 columns)
|
p@30
|
251 \hline\hline %inserts double horizontal lines
|
p@30
|
252 Trial & Validation error (\%) & Test error (\%) & Iter. & Time elapsed (min.) \\ [0.5ex] % inserts table
|
p@30
|
253 %heading
|
p@30
|
254 \hline % inserts single horizontal line
|
p@30
|
255 1 & 58.0 & 65.2 & 650 & 7.00 \\ % inserting body of the table
|
p@30
|
256 2 & 37.6 & 46.0 & 2150 & 13.07 \\
|
p@30
|
257 3 & 39.6 & 46.0 & 700 & 7.54 \\
|
p@30
|
258 4 & 35.6 & 36.8 & 550 & 6.01 \\
|
p@30
|
259 5 & 36.4 & 40.0 & 250 & 5.47 \\
|
p@30
|
260 6 & 40.4 & 44.8 & 150 & 5.41 \\
|
p@30
|
261 7 & 32.4 & 40.4 & 800 & 8.64 \\
|
p@30
|
262 8 & 36.0 & 38.8 & 250 & 5.42 \\
|
p@30
|
263 9 & 34.0 & 38.8 & 850 & 9.14 \\ [1ex] % [1ex] adds vertical space
|
p@30
|
264 \hline %inserts single line
|
p@30
|
265 \end{tabular}
|
p@30
|
266 \label{table:genre} % is used to refer this table in the text
|
p@30
|
267 \end{table}
|
p@30
|
268 \end{frame}
|
p@30
|
269
|
p@30
|
270 \subsection{Hybrid recommender}
|
p@30
|
271 \begin{frame}
|
p@30
|
272 \frametitle{Top - N recommendation}
|
p@30
|
273 \begin{figure}[ht!]
|
p@30
|
274 \centering
|
p@30
|
275 \includegraphics[width=0.9\textwidth]{a.png}
|
p@30
|
276 %\caption{CDNN for music genre classification (Kereliuk et al. 2015)}
|
p@30
|
277 %\label{fig:taste_profile}
|
p@30
|
278 \end{figure}
|
p@30
|
279 \end{frame}
|
p@30
|
280
|
p@30
|
281
|
p@30
|
282
|
p@30
|
283 %------------------------------------------------
|
p@30
|
284
|
p@30
|
285
|
p@30
|
286
|
p@30
|
287
|
p@30
|
288 \section{Conclusions and future work}
|
p@30
|
289 \begin{frame}
|
p@30
|
290 \frametitle{Conclusions and future work}
|
p@30
|
291 \begin{itemize}
|
p@30
|
292 \item CDNN produce similar results to long-established music genre classifiers
|
p@30
|
293 \item Hybrid permutation EDA outperforms CB
|
p@30
|
294 \item Investigate unsupervised deep learning
|
p@30
|
295 \item Online evaluation
|
p@30
|
296 \end{itemize}
|
p@30
|
297 \end{frame}
|
p@30
|
298
|
p@30
|
299
|
p@30
|
300
|
p@30
|
301 %------------------------------------------------
|
p@30
|
302
|
p@30
|
303 \begin{frame}
|
p@30
|
304 \Huge{\centerline{Questions?}}
|
p@30
|
305 \end{frame}
|
p@30
|
306
|
p@30
|
307 %----------------------------------------------------------------------------------------
|
p@30
|
308
|
p@30
|
309 \end{document} |