annotate slides/chiliguano_msc_project_slides.tex @ 47:b0186d4a4496 tip

Move 7Digital dataset to Downloads
author Paulo Chiliguano <p.e.chiliguano@se14.qmul.ac.uk>
date Sat, 09 Jul 2022 00:50:43 -0500
parents eba57dbe56f3
children
rev   line source
p@30 1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
p@30 2 % Beamer Presentation
p@30 3 % LaTeX Template
p@30 4 % Version 1.0 (10/11/12)
p@30 5 %
p@30 6 % This template has been downloaded from:
p@30 7 % http://www.LaTeXTemplates.com
p@30 8 %
p@30 9 % License:
p@30 10 % CC BY-NC-SA 3.0 (http://creativecommons.org/licenses/by-nc-sa/3.0/)
p@30 11 %
p@30 12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
p@30 13
p@30 14 %----------------------------------------------------------------------------------------
p@30 15 % PACKAGES AND THEMES
p@30 16 %----------------------------------------------------------------------------------------
p@30 17
p@27 18 \documentclass{beamer}
p@27 19
p@30 20 \mode<presentation> {
p@27 21
p@30 22 % The Beamer class comes with a number of default slide themes
p@30 23 % which change the colors and layouts of slides. Below this is a list
p@30 24 % of all the themes, uncomment each in turn to see what they look like.
p@30 25
p@30 26 %\usetheme{default}
p@30 27 %\usetheme{AnnArbor}
p@30 28 %\usetheme{Antibes}
p@30 29 %\usetheme{Bergen}
p@30 30 %\usetheme{Berkeley}
p@30 31 %\usetheme{Berlin}
p@30 32 %\usetheme{Boadilla}
p@30 33 %\usetheme{CambridgeUS}
p@30 34 %\usetheme{Copenhagen}
p@30 35 %\usetheme{Darmstadt}
p@30 36 %\usetheme{Dresden}
p@30 37 %\usetheme{Frankfurt}
p@30 38 %\usetheme{Goettingen}
p@30 39 %\usetheme{Hannover}
p@30 40 %\usetheme{Ilmenau}
p@30 41 %\usetheme{JuanLesPins}
p@30 42 %\usetheme{Luebeck}
p@30 43 \usetheme{Madrid}
p@30 44 %\usetheme{Malmoe}
p@30 45 %\usetheme{Marburg}
p@30 46 %\usetheme{Montpellier}
p@30 47 %\usetheme{PaloAlto}
p@30 48 %\usetheme{Pittsburgh}
p@30 49 %\usetheme{Rochester}
p@30 50 %\usetheme{Singapore}
p@30 51 %\usetheme{Szeged}
p@30 52 %\usetheme{Warsaw}
p@30 53
p@30 54 % As well as themes, the Beamer class has a number of color themes
p@30 55 % for any slide theme. Uncomment each of these in turn to see how it
p@30 56 % changes the colors of your current slide theme.
p@30 57
p@30 58 %\usecolortheme{albatross}
p@30 59 %\usecolortheme{beaver}
p@30 60 %\usecolortheme{beetle}
p@30 61 %\usecolortheme{crane}
p@30 62 %\usecolortheme{dolphin}
p@30 63 %\usecolortheme{dove}
p@30 64 %\usecolortheme{fly}
p@30 65 %\usecolortheme{lily}
p@30 66 %\usecolortheme{orchid}
p@30 67 %\usecolortheme{rose}
p@30 68 %\usecolortheme{seagull}
p@30 69 \usecolortheme{seahorse}
p@30 70 %\usecolortheme{whale}
p@30 71 %\usecolortheme{wolverine}
p@30 72
p@30 73 %\setbeamertemplate{footline} % To remove the footer line in all slides uncomment this line
p@30 74 %\setbeamertemplate{footline}[page number] % To replace the footer line in all slides with a simple slide count uncomment this line
p@30 75
p@30 76 \setbeamertemplate{navigation symbols}{} % To remove the navigation symbols from the bottom of all slides uncomment this line
p@30 77 }
p@30 78
p@30 79 \usepackage{graphicx} % Allows including images
p@30 80 \usepackage{booktabs} % Allows the use of \toprule, \midrule and \bottomrule in tables
p@30 81
p@30 82 %----------------------------------------------------------------------------------------
p@30 83 % TITLE PAGE
p@30 84 %----------------------------------------------------------------------------------------
p@30 85
p@30 86 \title[Hybrid music recommender]{Hybrid music recommender using content-based and social information} % The short title appears at the bottom of every slide, the full title is only on the title page
p@30 87
p@30 88 \author{Paulo Esteban Chiliguano Torres} % Your name
p@30 89 \institute[QMUL] % Your institution as it will appear on the bottom of every slide, may be shorthand to save space
p@30 90 {School of Electrical Engineering and Computer Science\\
p@30 91 Queen Mary University of London \\ % Your institution for the title page
p@30 92 \medskip
p@30 93 %\textit{john@smith.com} % Your email address
p@30 94 }
p@30 95 \date{September 1st, 2015} % Date, can be changed to a custom date
p@27 96
p@27 97 \begin{document}
p@27 98
p@27 99 \begin{frame}
p@30 100 \titlepage % Print the title page as the first slide
p@27 101 \end{frame}
p@27 102
p@30 103 \begin{frame}
p@30 104 \frametitle{Outline} % Table of contents slide, comment this block out to remove it
p@30 105 \tableofcontents % Throughout your presentation, if you choose to use \section{} and \subsection{} commands, these will automatically be printed on this slide as an outline of your presentation
p@29 106 \end{frame}
p@27 107
p@30 108 %----------------------------------------------------------------------------------------
p@30 109 % PRESENTATION SLIDES
p@30 110 %----------------------------------------------------------------------------------------
p@27 111
p@27 112
p@30 113 \section{Motivation}
p@30 114 \begin{frame}
p@30 115 \textit{''Music doesn't have any special meaning; it depends what it's attached to.''} (Oliver Sacks 1933-2015)
p@30 116 \end{frame}
p@30 117 \begin{frame}
p@30 118 \frametitle{Aim and Motivations}
p@30 119 Design and implement a hybrid music recommender to mitigate the cold-start problem in a content-based recommendation strategy.
p@27 120 \begin{itemize}
p@30 121 \pause \item Implement a convolutional deep neural network (CDNN) to obtain high-level representation of an audio file.
p@30 122 \pause \item Investigate Estimation of Distribution Algorithms (EDAs) to model user profiles in terms of probabilities of music genres preferences.
p@30 123 \end{itemize}
p@30 124 \end{frame}
p@30 125
p@30 126
p@30 127 \subsection{Related work}
p@30 128
p@30 129 \begin{frame}
p@30 130 \frametitle{Recommender Systems}
p@30 131 Hybrid music recommender (Yoshii et al. 2008)
p@30 132 \begin{itemize}
p@30 133 \item ``bag of timbres'' to represent acoustic features.
p@30 134 \item Three-way aspect model: ``unobserved'' genre
p@30 135 \end{itemize}
p@30 136 \pause Deep content-based music recommendation (Oord et al. 2013)
p@30 137 \begin{itemize}
p@30 138 \item CDNN for latent vector representation
p@30 139 \item Million Song Dataset
p@30 140 \end{itemize}
p@30 141 \pause Hybrid recommender based on EDA (Liang, T. et al. 2014)
p@30 142 \begin{itemize}
p@30 143 \item TF-IDF for item attributes
p@30 144 \item Movielens dataset
p@30 145 \item Permutation EDA
p@27 146 \end{itemize}
p@27 147
p@27 148
p@27 149
p@30 150 %The following two theorems might be important to recall
p@30 151 %\begin{theorem}[Theorem 1]
p@30 152 %The HVG associated to a bi-infinite series of i.i.d. random variables extracted from a continuous probability distribution $f(x)$ is
p@30 153 %$P(k)=\bigg (\frac{1}{3}\bigg ) \bigg (\frac{2}{3}\bigg )^{k-2}; \ k=2,3,\dots \ \ \ \ \ \ (\forall f)$
p@30 154 %\end{theorem}
p@30 155 %\begin{theorem}[Theorem 2]
p@30 156 %\The DHVG associated to a bi-infinite series of i.i.d. random variables extracted from a continuous probability distribution $f(x)$ is
p@30 157 %$P(k)=\bigg (\frac{1}{2}\bigg )^k; \ k=1,2,3,\dots \ \ \ \ \ \ (\forall f)$
p@30 158 %\end{theorem}
p@27 159 \end{frame}
p@27 160
p@30 161 \section{Hybrid music recommendation}
p@30 162 \subsection{Design}
p@30 163 \begin{frame}
p@30 164 \frametitle{Hybrid music recommender design}
p@30 165 Fundamental tasks:
p@27 166 \begin{itemize}
p@30 167 \item User modelling
p@30 168 \item Information filtering
p@30 169 \end{itemize}
p@30 170 Required data:
p@30 171 \begin{itemize}
p@30 172 \item User-item matrix: Taste profile dataset (53 users)
p@30 173 \item Audio clips: 7digital UK catalogue (640 clips)
p@30 174 \end{itemize}
p@30 175 Song representation:
p@30 176 \begin{itemize}
p@30 177 \item 10-dimensional vector
p@30 178 \item Probability to belong to a music genre
p@27 179 \end{itemize}
p@27 180
p@27 181
p@30 182 %\begin{example}[Theorem Slide Code]
p@30 183 %Blablabla
p@30 184 %\end{example}
p@30 185 %And then you might be able to state the main conjecture you will solve
p@27 186 \end{frame}
p@27 187
p@30 188 \subsection{Architecture}
p@30 189 \begin{frame}
p@30 190 \frametitle{Hybrid music recommender approach}
p@30 191 \begin{itemize}
p@30 192 \item Feature augmentation
p@30 193 \item Meta-level
p@30 194 \end{itemize}
p@30 195 \begin{figure}[ht!]
p@30 196 \centering
p@30 197 \includegraphics[width=\textwidth]{hybrid.png}
p@30 198 %\caption{Diagram of the cleaning process of the Taste Profile subset}
p@30 199 %\label{fig:taste_profile}
p@30 200 \end{figure}
p@27 201 \end{frame}
p@27 202
p@30 203 \subsection{Item and user representation}
p@29 204 \begin{frame}
p@30 205 \frametitle{Probability of music genre}
p@30 206 %\begin{itemize}
p@30 207 %\item Feature augmentation
p@30 208 %\item Meta-level
p@30 209 %\end{itemize}
p@30 210 \begin{figure}[ht!]
p@30 211 \centering
p@30 212 \includegraphics[width=\textwidth]{CDNN.png}
p@30 213 \caption{CDNN for music genre classification (Kereliuk et al. 2015)}
p@30 214 %\label{fig:taste_profile}
p@30 215 \end{figure}
p@29 216 \end{frame}
p@29 217
p@30 218 \begin{frame}
p@30 219 \frametitle{Estimation of Distribution Algorithms (EDAs)}
p@30 220 \begin{figure}[ht!]
p@30 221 \centering
p@30 222 \includegraphics[width=0.5\textwidth]{eda.png}
p@30 223 \caption{Flowchart for EDA (Ding et al. 2015)}
p@30 224 %\label{fig:taste_profile}
p@30 225 \end{figure}
p@30 226 \end{frame}
p@30 227 \begin{frame}
p@30 228 \frametitle{User profile modelling}
p@30 229 With permutation EDA:
p@30 230 \begin{itemize}
p@30 231 \item 10 tags (GTZAN) equivalent to keywords
p@30 232 \item 50 weights: evenly spaced over the inverval $[0.1,\ldots,0.9]$
p@30 233 \end{itemize}
p@30 234 \frametitle{User profile modelling}
p@30 235 With continuous EDA:
p@30 236 \begin{itemize}
p@30 237 \item Each genre considered as a dimension
p@30 238 \item Compute mean and covariance for each dimension along individuals
p@30 239 \item Sample from normal distribution
p@30 240 \end{itemize}
p@30 241 \end{frame}
p@30 242
p@30 243 \section{Results}
p@30 244 \subsection{Music genre classifier}
p@30 245 \begin{frame}
p@30 246 \frametitle{Genre classification}
p@30 247 \begin{table}[h!]
p@30 248 \caption{Genre classification results} % title of Table
p@30 249 \centering % used for centering table
p@30 250 \begin{tabular}{c c c c c} % centered columns (4 columns)
p@30 251 \hline\hline %inserts double horizontal lines
p@30 252 Trial & Validation error (\%) & Test error (\%) & Iter. & Time elapsed (min.) \\ [0.5ex] % inserts table
p@30 253 %heading
p@30 254 \hline % inserts single horizontal line
p@30 255 1 & 58.0 & 65.2 & 650 & 7.00 \\ % inserting body of the table
p@30 256 2 & 37.6 & 46.0 & 2150 & 13.07 \\
p@30 257 3 & 39.6 & 46.0 & 700 & 7.54 \\
p@30 258 4 & 35.6 & 36.8 & 550 & 6.01 \\
p@30 259 5 & 36.4 & 40.0 & 250 & 5.47 \\
p@30 260 6 & 40.4 & 44.8 & 150 & 5.41 \\
p@30 261 7 & 32.4 & 40.4 & 800 & 8.64 \\
p@30 262 8 & 36.0 & 38.8 & 250 & 5.42 \\
p@30 263 9 & 34.0 & 38.8 & 850 & 9.14 \\ [1ex] % [1ex] adds vertical space
p@30 264 \hline %inserts single line
p@30 265 \end{tabular}
p@30 266 \label{table:genre} % is used to refer this table in the text
p@30 267 \end{table}
p@30 268 \end{frame}
p@30 269
p@30 270 \subsection{Hybrid recommender}
p@30 271 \begin{frame}
p@30 272 \frametitle{Top - N recommendation}
p@30 273 \begin{figure}[ht!]
p@30 274 \centering
p@30 275 \includegraphics[width=0.9\textwidth]{a.png}
p@30 276 %\caption{CDNN for music genre classification (Kereliuk et al. 2015)}
p@30 277 %\label{fig:taste_profile}
p@30 278 \end{figure}
p@30 279 \end{frame}
p@30 280
p@30 281
p@30 282
p@30 283 %------------------------------------------------
p@30 284
p@30 285
p@30 286
p@30 287
p@30 288 \section{Conclusions and future work}
p@30 289 \begin{frame}
p@30 290 \frametitle{Conclusions and future work}
p@30 291 \begin{itemize}
p@30 292 \item CDNN produce similar results to long-established music genre classifiers
p@30 293 \item Hybrid permutation EDA outperforms CB
p@30 294 \item Investigate unsupervised deep learning
p@30 295 \item Online evaluation
p@30 296 \end{itemize}
p@30 297 \end{frame}
p@30 298
p@30 299
p@30 300
p@30 301 %------------------------------------------------
p@30 302
p@30 303 \begin{frame}
p@30 304 \Huge{\centerline{Questions?}}
p@30 305 \end{frame}
p@30 306
p@30 307 %----------------------------------------------------------------------------------------
p@30 308
p@30 309 \end{document}