p@30: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% p@30: % Beamer Presentation p@30: % LaTeX Template p@30: % Version 1.0 (10/11/12) p@30: % p@30: % This template has been downloaded from: p@30: % http://www.LaTeXTemplates.com p@30: % p@30: % License: p@30: % CC BY-NC-SA 3.0 (http://creativecommons.org/licenses/by-nc-sa/3.0/) p@30: % p@30: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% p@30: p@30: %---------------------------------------------------------------------------------------- p@30: % PACKAGES AND THEMES p@30: %---------------------------------------------------------------------------------------- p@30: p@27: \documentclass{beamer} p@27: p@30: \mode { p@27: p@30: % The Beamer class comes with a number of default slide themes p@30: % which change the colors and layouts of slides. Below this is a list p@30: % of all the themes, uncomment each in turn to see what they look like. p@30: p@30: %\usetheme{default} p@30: %\usetheme{AnnArbor} p@30: %\usetheme{Antibes} p@30: %\usetheme{Bergen} p@30: %\usetheme{Berkeley} p@30: %\usetheme{Berlin} p@30: %\usetheme{Boadilla} p@30: %\usetheme{CambridgeUS} p@30: %\usetheme{Copenhagen} p@30: %\usetheme{Darmstadt} p@30: %\usetheme{Dresden} p@30: %\usetheme{Frankfurt} p@30: %\usetheme{Goettingen} p@30: %\usetheme{Hannover} p@30: %\usetheme{Ilmenau} p@30: %\usetheme{JuanLesPins} p@30: %\usetheme{Luebeck} p@30: \usetheme{Madrid} p@30: %\usetheme{Malmoe} p@30: %\usetheme{Marburg} p@30: %\usetheme{Montpellier} p@30: %\usetheme{PaloAlto} p@30: %\usetheme{Pittsburgh} p@30: %\usetheme{Rochester} p@30: %\usetheme{Singapore} p@30: %\usetheme{Szeged} p@30: %\usetheme{Warsaw} p@30: p@30: % As well as themes, the Beamer class has a number of color themes p@30: % for any slide theme. Uncomment each of these in turn to see how it p@30: % changes the colors of your current slide theme. p@30: p@30: %\usecolortheme{albatross} p@30: %\usecolortheme{beaver} p@30: %\usecolortheme{beetle} p@30: %\usecolortheme{crane} p@30: %\usecolortheme{dolphin} p@30: %\usecolortheme{dove} p@30: %\usecolortheme{fly} p@30: %\usecolortheme{lily} p@30: %\usecolortheme{orchid} p@30: %\usecolortheme{rose} p@30: %\usecolortheme{seagull} p@30: \usecolortheme{seahorse} p@30: %\usecolortheme{whale} p@30: %\usecolortheme{wolverine} p@30: p@30: %\setbeamertemplate{footline} % To remove the footer line in all slides uncomment this line p@30: %\setbeamertemplate{footline}[page number] % To replace the footer line in all slides with a simple slide count uncomment this line p@30: p@30: \setbeamertemplate{navigation symbols}{} % To remove the navigation symbols from the bottom of all slides uncomment this line p@30: } p@30: p@30: \usepackage{graphicx} % Allows including images p@30: \usepackage{booktabs} % Allows the use of \toprule, \midrule and \bottomrule in tables p@30: p@30: %---------------------------------------------------------------------------------------- p@30: % TITLE PAGE p@30: %---------------------------------------------------------------------------------------- p@30: p@30: \title[Hybrid music recommender]{Hybrid music recommender using content-based and social information} % The short title appears at the bottom of every slide, the full title is only on the title page p@30: p@30: \author{Paulo Esteban Chiliguano Torres} % Your name p@30: \institute[QMUL] % Your institution as it will appear on the bottom of every slide, may be shorthand to save space p@30: {School of Electrical Engineering and Computer Science\\ p@30: Queen Mary University of London \\ % Your institution for the title page p@30: \medskip p@30: %\textit{john@smith.com} % Your email address p@30: } p@30: \date{September 1st, 2015} % Date, can be changed to a custom date p@27: p@27: \begin{document} p@27: p@27: \begin{frame} p@30: \titlepage % Print the title page as the first slide p@27: \end{frame} p@27: p@30: \begin{frame} p@30: \frametitle{Outline} % Table of contents slide, comment this block out to remove it p@30: \tableofcontents % Throughout your presentation, if you choose to use \section{} and \subsection{} commands, these will automatically be printed on this slide as an outline of your presentation p@29: \end{frame} p@27: p@30: %---------------------------------------------------------------------------------------- p@30: % PRESENTATION SLIDES p@30: %---------------------------------------------------------------------------------------- p@27: p@27: p@30: \section{Motivation} p@30: \begin{frame} p@30: \textit{''Music doesn't have any special meaning; it depends what it's attached to.''} (Oliver Sacks 1933-2015) p@30: \end{frame} p@30: \begin{frame} p@30: \frametitle{Aim and Motivations} p@30: Design and implement a hybrid music recommender to mitigate the cold-start problem in a content-based recommendation strategy. p@27: \begin{itemize} p@30: \pause \item Implement a convolutional deep neural network (CDNN) to obtain high-level representation of an audio file. p@30: \pause \item Investigate Estimation of Distribution Algorithms (EDAs) to model user profiles in terms of probabilities of music genres preferences. p@30: \end{itemize} p@30: \end{frame} p@30: p@30: p@30: \subsection{Related work} p@30: p@30: \begin{frame} p@30: \frametitle{Recommender Systems} p@30: Hybrid music recommender (Yoshii et al. 2008) p@30: \begin{itemize} p@30: \item ``bag of timbres'' to represent acoustic features. p@30: \item Three-way aspect model: ``unobserved'' genre p@30: \end{itemize} p@30: \pause Deep content-based music recommendation (Oord et al. 2013) p@30: \begin{itemize} p@30: \item CDNN for latent vector representation p@30: \item Million Song Dataset p@30: \end{itemize} p@30: \pause Hybrid recommender based on EDA (Liang, T. et al. 2014) p@30: \begin{itemize} p@30: \item TF-IDF for item attributes p@30: \item Movielens dataset p@30: \item Permutation EDA p@27: \end{itemize} p@27: p@27: p@27: p@30: %The following two theorems might be important to recall p@30: %\begin{theorem}[Theorem 1] p@30: %The HVG associated to a bi-infinite series of i.i.d. random variables extracted from a continuous probability distribution $f(x)$ is p@30: %$P(k)=\bigg (\frac{1}{3}\bigg ) \bigg (\frac{2}{3}\bigg )^{k-2}; \ k=2,3,\dots \ \ \ \ \ \ (\forall f)$ p@30: %\end{theorem} p@30: %\begin{theorem}[Theorem 2] p@30: %\The DHVG associated to a bi-infinite series of i.i.d. random variables extracted from a continuous probability distribution $f(x)$ is p@30: %$P(k)=\bigg (\frac{1}{2}\bigg )^k; \ k=1,2,3,\dots \ \ \ \ \ \ (\forall f)$ p@30: %\end{theorem} p@27: \end{frame} p@27: p@30: \section{Hybrid music recommendation} p@30: \subsection{Design} p@30: \begin{frame} p@30: \frametitle{Hybrid music recommender design} p@30: Fundamental tasks: p@27: \begin{itemize} p@30: \item User modelling p@30: \item Information filtering p@30: \end{itemize} p@30: Required data: p@30: \begin{itemize} p@30: \item User-item matrix: Taste profile dataset (53 users) p@30: \item Audio clips: 7digital UK catalogue (640 clips) p@30: \end{itemize} p@30: Song representation: p@30: \begin{itemize} p@30: \item 10-dimensional vector p@30: \item Probability to belong to a music genre p@27: \end{itemize} p@27: p@27: p@30: %\begin{example}[Theorem Slide Code] p@30: %Blablabla p@30: %\end{example} p@30: %And then you might be able to state the main conjecture you will solve p@27: \end{frame} p@27: p@30: \subsection{Architecture} p@30: \begin{frame} p@30: \frametitle{Hybrid music recommender approach} p@30: \begin{itemize} p@30: \item Feature augmentation p@30: \item Meta-level p@30: \end{itemize} p@30: \begin{figure}[ht!] p@30: \centering p@30: \includegraphics[width=\textwidth]{hybrid.png} p@30: %\caption{Diagram of the cleaning process of the Taste Profile subset} p@30: %\label{fig:taste_profile} p@30: \end{figure} p@27: \end{frame} p@27: p@30: \subsection{Item and user representation} p@29: \begin{frame} p@30: \frametitle{Probability of music genre} p@30: %\begin{itemize} p@30: %\item Feature augmentation p@30: %\item Meta-level p@30: %\end{itemize} p@30: \begin{figure}[ht!] p@30: \centering p@30: \includegraphics[width=\textwidth]{CDNN.png} p@30: \caption{CDNN for music genre classification (Kereliuk et al. 2015)} p@30: %\label{fig:taste_profile} p@30: \end{figure} p@29: \end{frame} p@29: p@30: \begin{frame} p@30: \frametitle{Estimation of Distribution Algorithms (EDAs)} p@30: \begin{figure}[ht!] p@30: \centering p@30: \includegraphics[width=0.5\textwidth]{eda.png} p@30: \caption{Flowchart for EDA (Ding et al. 2015)} p@30: %\label{fig:taste_profile} p@30: \end{figure} p@30: \end{frame} p@30: \begin{frame} p@30: \frametitle{User profile modelling} p@30: With permutation EDA: p@30: \begin{itemize} p@30: \item 10 tags (GTZAN) equivalent to keywords p@30: \item 50 weights: evenly spaced over the inverval $[0.1,\ldots,0.9]$ p@30: \end{itemize} p@30: \frametitle{User profile modelling} p@30: With continuous EDA: p@30: \begin{itemize} p@30: \item Each genre considered as a dimension p@30: \item Compute mean and covariance for each dimension along individuals p@30: \item Sample from normal distribution p@30: \end{itemize} p@30: \end{frame} p@30: p@30: \section{Results} p@30: \subsection{Music genre classifier} p@30: \begin{frame} p@30: \frametitle{Genre classification} p@30: \begin{table}[h!] p@30: \caption{Genre classification results} % title of Table p@30: \centering % used for centering table p@30: \begin{tabular}{c c c c c} % centered columns (4 columns) p@30: \hline\hline %inserts double horizontal lines p@30: Trial & Validation error (\%) & Test error (\%) & Iter. & Time elapsed (min.) \\ [0.5ex] % inserts table p@30: %heading p@30: \hline % inserts single horizontal line p@30: 1 & 58.0 & 65.2 & 650 & 7.00 \\ % inserting body of the table p@30: 2 & 37.6 & 46.0 & 2150 & 13.07 \\ p@30: 3 & 39.6 & 46.0 & 700 & 7.54 \\ p@30: 4 & 35.6 & 36.8 & 550 & 6.01 \\ p@30: 5 & 36.4 & 40.0 & 250 & 5.47 \\ p@30: 6 & 40.4 & 44.8 & 150 & 5.41 \\ p@30: 7 & 32.4 & 40.4 & 800 & 8.64 \\ p@30: 8 & 36.0 & 38.8 & 250 & 5.42 \\ p@30: 9 & 34.0 & 38.8 & 850 & 9.14 \\ [1ex] % [1ex] adds vertical space p@30: \hline %inserts single line p@30: \end{tabular} p@30: \label{table:genre} % is used to refer this table in the text p@30: \end{table} p@30: \end{frame} p@30: p@30: \subsection{Hybrid recommender} p@30: \begin{frame} p@30: \frametitle{Top - N recommendation} p@30: \begin{figure}[ht!] p@30: \centering p@30: \includegraphics[width=0.9\textwidth]{a.png} p@30: %\caption{CDNN for music genre classification (Kereliuk et al. 2015)} p@30: %\label{fig:taste_profile} p@30: \end{figure} p@30: \end{frame} p@30: p@30: p@30: p@30: %------------------------------------------------ p@30: p@30: p@30: p@30: p@30: \section{Conclusions and future work} p@30: \begin{frame} p@30: \frametitle{Conclusions and future work} p@30: \begin{itemize} p@30: \item CDNN produce similar results to long-established music genre classifiers p@30: \item Hybrid permutation EDA outperforms CB p@30: \item Investigate unsupervised deep learning p@30: \item Online evaluation p@30: \end{itemize} p@30: \end{frame} p@30: p@30: p@30: p@30: %------------------------------------------------ p@30: p@30: \begin{frame} p@30: \Huge{\centerline{Questions?}} p@30: \end{frame} p@30: p@30: %---------------------------------------------------------------------------------------- p@30: p@30: \end{document}