Mercurial > hg > human-echolocation
view simulateBinauralSignals.m @ 18:2d5f50205527 jabuilder_int tip
Escape the trailing backslash as well
author | Chris Cannam |
---|---|
date | Tue, 30 Sep 2014 16:23:00 +0100 |
parents | 4952897aa6d4 |
children |
line wrap: on
line source
function simulateBinauralSignals(inputstruct) %Creates .wav file of 2sec long binaural signals for specific board dimensions and gaussian white noise stimulus % % INPUTS: % The input must be a structure with fields: % .dist (1st input argument) is the distance in meters % .azim (2nd input argument) is the azimuth in degrees (0 means straight ahead, positive angles are left and negative % are right) % .orient (3rd input argument) must be either 'horz' or 'angled' corresponding to flat and angled descriptions in % Papadopoulos et al. BSPC 2011. % .dirweight (4th input argument) must be a nonnegative real scalar determining what is the relative weight of the % emission path to the echo path (i.e. due to directivity focus in the frontal direction of the source, the emission % which is directed upwards and backwards in our specific geometry is significantly attenuated, typically by factor in % the vicinity of 0.2) % .outdir (5th input argument) must be the directory in which the wave file % is to be written. It may be an absolute path, or relative to the current % directory. Temporary files will be written in the same directory. % .outname (6th input argument) must be the name of the wave file to write, % within the outdir, without the .wav suffix (which will be added). % .indir (7th input argument) must be the directory from which input data % such as IR files are to be read. It may be an absolute path, or relative % to the current directory. % %% Internal workings description % % Center of spherical coordinates system is taken to be the center of head. The azimuth, elevation and distance % coordinates are as in matlabs sph2cart function (azimuth and elevation are angular displacements from the positive % x-axis and from the x-y plane, respectively) with positive x axis taken to be extending to the right of the head from % top view, positive y axis to be extending forward of the head in top view and positive z axis to be extending upwards % in top view.http://getpermanent.com/index % % Board dimensions are defined as % params.board_size_x (width in meters for the 'center' orientation of Papadopoulos et al. BSPC 2011) % params.board_size_y (depth in meters for the 'center' orientation of Papadopoulos et al. BSPC 2011) % params.board_size_z (height in meters for the 'center' orientation of Papadopoulos et al. BSPC 2011) % % Board center position is defined as % params.board_distance (distance in meters from coords origin to center of board following coordinate system described % above), can be row vector. % params.board_azim (azimuth in radians of the center of the board following coordinate system described above), % can be row vector. % params.board_elev (elevation in radians of the center of the board following coordinate system described above), % must be scalar % % params.board_orientation scalar or 1x2 cell with elements 'horz' or/and 'angled' % Board is taken to always be vertically positioned (i.e. with its width-height plane vertical to the y coordinate) and % two cases of orientation are considered: horizontal and angled corresponding to flat and angled descriptions in % Papadopoulos et al. BSPC 2011. % % params.source_down non-negative scalar in meters % params.source_front non-negative scalar in meters % The source is assumed to always be in front of the chest and below the head. (params.source_down and % params.source_front cannot both be 0) % % % params.horz_disamb string which can be either 'BSPC2011' or 'collocated'. If equal to 'BSPC2011' then board distance % for the horizontal (flat) case is as described in Papadopoulos et al. BSPC 2011, i.e. the board % distance is the distance between the centre of the head and the PLANE OF THE BOARD. % Alternatively, in the 'collocated' case, the board distance in the horizontal (flat) case is taken % as the distance between the centre of the head and the centre of the board % % NOTE: in the 'BSPC2011' case of params.horz_disamb, it is easy to see that the geometry is ill-specified for board % positions far away from the median plane. % % OUTPUTS: % % --- simulation_data is a structure with the following fields: % - simulation_data.echo is a cell of dimensions % length(params.board_dist) x length(params.board_azim) x length(params.board_orientation) % each element of which is a 2-row matrix with the left (top row) and right (bottom row) ear responses corresponding the % echo only. % % - simulation_data.emission is a cell of dimensions % length(params.board_dist) x length(params.board_azim) x length(params.board_orientation) % each element of which is a 2-row matrix with the left (top row) and right (bottom row) ear responses corresponding the % direct source-to-receiver path only. (NOTE: source term (binaural_irs_emission) does not need to be computed for each % different board distance/azimuth/orientation as it is the same irs but containing a different number of trailing zero % samples. I include this redundancy because it simplified the computation a bit and also because this way the emission % part is always equal in length with the corresponding echo part and can be added easier) % % Adding any given % directivity_weighting * simulation_data.emission{ii,jj,kk}(1,:) + simulation_data.echo{ii,jj,kk}(1,:) % for any given ii, jj, kk will give the total left ear IR and the same for right ear by % directivity_weighting * simulation_data.emission{ii,jj,kk}(2,:) + simulation_data.echo{ii,jj,kk}(2,:) % % - simulation_data.params is the stucture params described above % - simulation_data.board_coords is an array of dimensions % 8 x 3 x length(params.board_dist) x length(params.board_azim) x length(params.board_orientation) % containing the x y z coordinates (2nd dimension) of the 8 edges (1st dimension) of the board geometries for different % board distances, azimuths and orientations. % - simulation_data.azerr and simulation_data.elerr are arrays of dimensions % 2 x 1+length(params.board_azim)) % which contain the error (in degrees) between the azimuth and elevation respectively of the HRTFs that are used (as % existing in the CIPIC spherical grid) and the actual board center azimuth and elevation. % % % % DEVELOPMENT NOTES % % TODO: include case of multiple boards and of non-vertically oriented boards (i.e. all cases of pitch, roll, yaw for % board orientation) % % TODO: include geometrical description for all possible positions of the source % % TODO: include validateattributes for all parameters % % TODO: include parameter controls for specorder (now set to 1), difforder (now set to 1), elemsize (now set to [1]) and % nedgesubs (now set to 2) % % %% Take inputs args from input structure dist = inputstruct.dist; azim = inputstruct.azim; orient = inputstruct.orient; dirweight = inputstruct.dirweight; outdir = inputstruct.outdir; outname = inputstruct.outname; indir = inputstruct.indir; %% Validate attributes validateattributes(dist,{'double'},{'scalar','>',0}) validateattributes(azim,{'double'},{'scalar','<=',90,'>=',-90}) validateattributes(orient,{'char'},{'nonempty'}) validateattributes(dirweight,{'double'},{'scalar','>',0}) validateattributes(outdir,{'char'},{'nonempty'}) validateattributes(outname,{'char'},{'nonempty'}) validateattributes(indir,{'char'},{'nonempty'}) %% Computation parameters (Some fixed, some taken from input arguments) params.board_size_x = .55; params.board_size_y = .02; params.board_size_z = .55; params.board_azim = mod(90+azim,360)*pi/180; params.board_elev = 0*pi/180; params.board_dist = dist; % % params.board_azim = mod(90+[-17 17],360)*pi/180; % corresponds to a board 17degress to the right and a board 17 % degrees to the left. The elements of the vector ([-17 17] in this example) must be in the range (-180,180] and are % converted by the line in this example to the coordinate system described in the help preample. % % params.board_elev = 10*pi/180; % corresponds to a board 10 degrees above the azimuthal plane. The value (0 in this % example) must be in the range [-90,90] and is converted by the line in this example to the coordinate system described % in the help preample. % % params.board_dist is in meters and it can be a vector of (strictly positive) distances as needed params.board_orientation = {validatestring(orient,{'horz','angled'})}; params.source_down = 0.25; % Take the source to always be directly below the chin. params.source_front = 0.05; % Take the source to always be directly in front of chest. params.Fs = 44100; params.Cair = 344; params.Rhoair = 1.21; params.WavDurationSec = 2; params.WavScaling = 0.1; params.dirweight = dirweight; params.horz_disamb = 'BSPC2011'; params.wavfilename = [outdir filesep outname '.wav'] %% Compute free field (no head) IRs temp_edges = [ +params.board_size_x/2 +params.board_size_y/2 +params.board_size_z/2 -params.board_size_x/2 +params.board_size_y/2 +params.board_size_z/2 -params.board_size_x/2 -params.board_size_y/2 +params.board_size_z/2 +params.board_size_x/2 -params.board_size_y/2 +params.board_size_z/2 +params.board_size_x/2 +params.board_size_y/2 -params.board_size_z/2 -params.board_size_x/2 +params.board_size_y/2 -params.board_size_z/2 -params.board_size_x/2 -params.board_size_y/2 -params.board_size_z/2 +params.board_size_x/2 -params.board_size_y/2 -params.board_size_z/2 ]; FFresp{length(params.board_dist),length(params.board_azim),length(params.board_orientation)} = []; binaural_irs_echo{length(params.board_dist),length(params.board_azim),length(params.board_orientation)} = []; binaural_irs_emission{length(params.board_dist),length(params.board_azim),length(params.board_orientation)} = []; % NOTE: in the above initialisation the source term (binaural_irs_emission) does not need to be computed for each % different board distance/azimuth/orientation as it is the same. I include this redundancy so that the emission % binaural irs that I compute each time in in a few lines are correct, i.e. I can check that all the binaural responses % in the binaural_irs_emission cell are equal. board_coords(8,3,length(params.board_dist),length(params.board_azim),length(params.board_orientation)) = 0; geom.Fs = params.Fs; geom.Cair = params.Cair; geom.Rhoair = params.Rhoair; geom.source_position = [0 params.source_front -params.source_down]; for ii = 1:length(params.board_dist) for jj = 1:length(params.board_azim) for kk = 1:length(params.board_orientation) if strcmp(params.board_orientation{kk},'angled') theta_angled = params.board_azim(jj) - pi/2; Rot_mat = [ cos(theta_angled) -sin(theta_angled) 0 sin(theta_angled) cos(theta_angled) 0 0 0 1 ]; temp2_edges = ( Rot_mat * temp_edges.' ) .' ; % for the rotation matrix see http://en.wikipedia.org/wiki/Rotation_matrix [trans_x, trans_y, trans_z] = sph2cart(params.board_azim(jj),params.board_elev,params.board_dist(ii)); geom.scatterer_edges = ... temp2_edges + repmat([trans_x, trans_y, trans_z],8,1); board_coords(:,:,ii,jj,kk) = geom.scatterer_edges; elseif strcmp(params.board_orientation{kk},'horz') temp2_edges = temp_edges; if strcmp(params.horz_disamb,'collocated') [trans_x, trans_y, trans_z] = sph2cart(params.board_azim(jj),params.board_elev,params.board_dist(ii)); elseif strcmp(params.horz_disamb,'BSPC2011') [trans_x, trans_y, trans_z] = sph2cart(... params.board_azim(jj),... params.board_elev,... params.board_dist(ii)/abs(cos(params.board_azim(jj)-pi/2))); else error('params.horz_disamb must be set to either ''BSPC2011'' or ''collocated''') end geom.scatterer_edges = ... temp2_edges + repmat([trans_x, trans_y, trans_z],8,1); board_coords(:,:,ii,jj,kk) = geom.scatterer_edges; end FFresp(ii,jj,kk) = edhrir_single_cuboid(outdir, geom); end end end %% Compute binaural IRs temp = load([indir filesep 'hrir_final.mat']); %This is subject_165 CIPIC data h3D_lear = temp.hrir_l; h3D_rear = temp.hrir_r; clear temp cipic_source_az = 0*180/pi; cipic_source_el = atan(-params.source_down/params.source_front)*180/pi; [source_lear_ir, azerr(1,1+length(params.board_azim)), elerr(1,1+length(params.board_azim))] = ... getNearestUCDpulse(cipic_source_az,cipic_source_el,h3D_lear); [source_rear_ir, azerr(2,1+length(params.board_azim)), elerr(2,1+length(params.board_azim))] = ... getNearestUCDpulse(cipic_source_az,cipic_source_el,h3D_rear); % NOTE: in the following computation the source term (binaural_irs_emission) does not need to be computed for each % different board distance/azimuth/orientation as it is the same. I include the redundancy as a check that the geometry % modelling and computations are correct, i.e. I can check that all the binaural responses in the binaural_irs_emission % cell are equal. for ii = 1:length(params.board_azim) cipic_board_az = 90-params.board_azim(ii)*180/pi; cipic_board_el = params.board_elev*180/pi; [lear_ir, azerr(1,ii), elerr(1,ii)] = getNearestUCDpulse(cipic_board_az,cipic_board_el,h3D_lear); [rear_ir, azerr(2,ii), elerr(2,ii)] = getNearestUCDpulse(cipic_board_az,cipic_board_el,h3D_rear); for jj = 1:length(params.board_dist) for kk = 1:length(params.board_orientation) binaural_irs_emission{jj,ii,kk}(1,:) = fftconv(source_lear_ir,FFresp{jj,ii,kk}(2,:)); %source term binaural_irs_emission{jj,ii,kk}(2,:) = fftconv(source_rear_ir,FFresp{jj,ii,kk}(2,:)); %source term binaural_irs_echo{jj,ii,kk}(1,:) = fftconv(lear_ir,FFresp{jj,ii,kk}(1,:)+FFresp{jj,ii,kk}(3,:)); %board echo term binaural_irs_echo{jj,ii,kk}(2,:) = fftconv(rear_ir,FFresp{jj,ii,kk}(1,:)+FFresp{jj,ii,kk}(3,:)); %board echo term end end end simulation_data.echo = binaural_irs_echo; simulation_data.emission =binaural_irs_emission; simulation_data.params = params; simulation_data.board_coords = board_coords; simulation_data.azerr = azerr; simulation_data.elerr = elerr; %% Compute binaural signals and save binaural wav file binaural_ir = params.dirweight*simulation_data.emission{1,1,1} + simulation_data.echo{1,1,1}; stim = params.WavScaling*randn(1,params.WavDurationSec*params.Fs); temp = [fftfilt(binaural_ir(1,:),stim);fftfilt(binaural_ir(2,:),stim)].'; if max(max(abs(temp))) > 1 warning('wavfile clipped') end audiowrite(params.wavfilename,temp,params.Fs); %% Subfunctions function [pulse, azerr, elerr] = getNearestUCDpulse(azimuth,elevation,h3D) azimuth = pvaldeg(azimuth); elevation = pvaldeg(elevation); elmax = 50; elindices = 1:elmax; elevations = -45 + 5.625*(elindices - 1); el = round((elevation + 45)/5.625 + 1); el = max(el,1); el = min(el,elmax); elerr = pvaldeg(elevation - elevations(el)); azimuths = [-80 -65 -55 -45:5:45 55 65 80]; [azerr, az] = min(abs(pvaldeg(abs(azimuths - azimuth)))); pulse = squeeze(h3D(az,el,:)); function angle = pvaldeg(angle) dtr = pi/180; angle = atan2(sin(angle*dtr),cos(angle*dtr))/dtr; if angle < - 90 angle = angle + 360; end function out=fftconv(in1,in2) % % Computes the convolution output out of the input vectors in1 and in2 % either with time-domain convolution (as implemented by conv) or by % frequency-domain filtering (as implemented by zero-padded fftfilt). % % out=fftconv(in1,in2) % in1=in1(:).';in2=in2(:).'; if (length(in1)>100 && length(in2)>100) if length(in1)>=length(in2) out=fftfilt(in2,[in1 zeros(1,length(in2)-1)]); else out=fftfilt(in1,[in2 zeros(1,length(in1)-1)]); end else out=conv(in1,in2); end function ir_matrix=edhrir_single_cuboid(outdir, geom) % % Matrix of irs for a single cuboid scatterer using EDTB % % Works for external geometry. Definition of corners and planes in the created CAD file should be pointing outwards (in % cartesian coordinates as defined below). % % x coordinate (increasing to right in top view, right hand thumb) % y coordinate (increasing in front in top view, right hand index) % z coordinate (increasing upwards in top view, right hand middle) % % For more details about geometry description see the main help preample. % % geom input parameter should be a structure with the following fields: % % geom.scatterer_edges is a 8x3 matrix with elements: % x y z coordinates of back right top edge (point 1) % x y z coordinates of back left top edge (point 2) % x y z coordinates of front left top edge (point 3) % x y z coordinates of front right top edge (point 4) % x y z coordinates of back right bottom edge (point 1) % x y z coordinates of back left bottom edge (point 2) % x y z coordinates of front left bottom edge (point 3) % x y z coordinates of front right bottom edge (point 4) % % (or any sequence of rotations of a cuboid with edges as above) % % geom.source_position (Single) source coordinates in cartesian system defined 1x3 positive real vector. (Single) % receiver always taken to be at coordinates origin (0,0,0) % % geom.Fs % geom.Cair % geom.Rhoair % %% 1 temp_filename=['a' num2str(now*1e12,'%-24.0f')]; cad_filename=[temp_filename '.cad'] fid=fopen([outdir filesep cad_filename],'w'); % TODO add onCleanup to fclose this file fprintf(fid,'%%CORNERS\n\n'); fprintf(fid,'%.0f %9.6f %9.6f %9.6f\n',... 1, geom.scatterer_edges(1,1), geom.scatterer_edges(1,2), geom.scatterer_edges(1,3),... 2, geom.scatterer_edges(2,1), geom.scatterer_edges(2,2), geom.scatterer_edges(2,3),... 3, geom.scatterer_edges(3,1), geom.scatterer_edges(3,2), geom.scatterer_edges(3,3),... 4, geom.scatterer_edges(4,1), geom.scatterer_edges(4,2), geom.scatterer_edges(4,3),... 5, geom.scatterer_edges(5,1), geom.scatterer_edges(5,2), geom.scatterer_edges(5,3),... 6, geom.scatterer_edges(6,1), geom.scatterer_edges(6,2), geom.scatterer_edges(6,3),... 7, geom.scatterer_edges(7,1), geom.scatterer_edges(7,2), geom.scatterer_edges(7,3),... 8, geom.scatterer_edges(8,1), geom.scatterer_edges(8,2), geom.scatterer_edges(8,3)); fprintf(fid,'\n%%PLANES\n'); fprintf(fid,'\n1 / /RIGID\n1 2 3 4\n'); fprintf(fid,'\n2 / /RIGID\n5 8 7 6\n'); fprintf(fid,'\n3 / /RIGID\n1 4 8 5\n'); fprintf(fid,'\n4 / /RIGID\n1 5 6 2\n'); fprintf(fid,'\n5 / /RIGID\n2 6 7 3\n'); fprintf(fid,'\n6 / /RIGID\n7 8 4 3\n'); fprintf(fid,'\n%%EOF'); fclose(fid); setup_filename = [temp_filename '_setup.m'] fid=fopen([outdir filesep setup_filename],'wt'); % TODO add onCleanup to fclose this file fprintf(fid,'\n global FSAMP CAIR RHOAIR SHOWTEXT'); fprintf(fid,['\n FSAMP = ' num2str(geom.Fs) ';']); fprintf(fid,['\n CAIR = ' num2str(geom.Cair) ';']); fprintf(fid,['\n RHOAIR = ' num2str(geom.Rhoair) ';']); fprintf(fid,'\n SHOWTEXT = 2;'); fprintf(fid,'\n SUPPRESSFILES = 0;'); temp = strrep([outdir filesep],'\','\\'); fprintf(fid,['\n Filepath=''' temp ''';']); fprintf(fid,['\n Filestem=''' temp_filename ''';']); fprintf(fid,['\n CADfile=''' temp cad_filename ''';']); fprintf(fid,'\n open_or_closed_model = ''open'';'); fprintf(fid,'\n int_or_ext_model = ''ext'';'); fprintf(fid,'\n EDcalcmethod = ''n'';'); fprintf(fid,'\n directsound = 1;'); fprintf(fid,'\n specorder = 1;'); fprintf(fid,'\n difforder = 1;'); fprintf(fid,'\n elemsize = [1];'); fprintf(fid,'\n nedgesubs = 2;'); fprintf(fid,'\n calcpaths = 1;'); fprintf(fid,'\n calcirs = 1;'); fprintf(fid,'\n sources=['); for n=1:1 fprintf(fid,['\n' num2str(geom.source_position(1)) ' ' ... num2str(geom.source_position(2)) ' ' ... num2str(geom.source_position(3))]); end fprintf(fid,'\n ];'); fprintf(fid,'\n receivers=['); for n=1:1 fprintf(fid,'\n 0 0 0'); end fprintf(fid,'\n ];'); fprintf(fid,'\n skipcorners = 1000000;'); fprintf(fid,'\n Rstart = 0;'); fclose(fid); %pause(1); [~, ir_matrix]=myver_edtb(outdir, [outdir filesep setup_filename]); delete([outdir filesep cad_filename]); delete([outdir filesep setup_filename]); function [ir,varargout]=myver_edtb(outdir,EDsetupfile) % implements the computation of EDToolbox (by Peter Svensson) with a front-end % designed for my needs. % % Takes one input which a setup file as specified by Svensson and gives % either one vector output (which is the irtot output of Svensson's implementation for % the first source and first receiver in the input "EDsetupfile" setup file) or % two outputs, the first as above and the second being a {NxM} cell (N the number % of sources and M the number of receivers) each element of which is a 4xL matrix % with its 4 rows being the irdiff, irdirect, irgeom and irtot outputs of Svensson's % computation for the corresponding source and receiver. % % The code deletes all other .mat files created by Svensson's % implementation. % % [ir ir_all_data]=myver_edtb(EDsetupfile); %keep record of files in the current directory before computation dir_bef=dir(outdir); ir=1; disp(['Will call ' EDsetupfile]) %run computation EDB1main(EDsetupfile); %get files list in the current directory after computation dir_aft=dir(outdir); %get all genuine files (excluding other directories) in current directory %after computation k=1; for n=1:size(dir_aft,1) if(~dir_aft(n).isdir) names_aft{k}=dir_aft(n).name;k=k+1; %#ok<AGROW> end end %get all genuine files (excluding other directories) in current directory %before computation k=1; for n=1:size(dir_bef,1) if(~dir_bef(n).isdir) names_bef{k}=dir_bef(n).name;k=k+1; %#ok<AGROW> end end %get irtot for 1st source 1st receiver and delete files created by %computation. % for n=1:length(names_aft) % if ~strcmp(names_aft(n),names_bef) % if ~isempty(strfind(names_aft{n},'_1_1_ir.mat')) % temp=load(names_aft{n}); % ir=full(temp.irtot); % clear temp % end % delete(names_aft{n}) % end % end for n=1:length(names_aft) if ~strcmp(names_aft(n),names_bef) if ~isempty(strfind(names_aft{n},'_1_1_ir.mat')) temp=load([outdir filesep names_aft{n}]); ir=full(temp.irtot); clear temp end if nargout>1 if ~isempty(strfind(names_aft{n},'_ir.mat')) temp=load([outdir filesep names_aft{n}]); temp2=regexp(regexp(names_aft{n},'_\d*_\d*_','match'),'\d*','match'); temp3{str2double(temp2{1}(1)),str2double(temp2{1}(2))}(4,:)=full(temp.irtot); %#ok<AGROW> temp3{str2double(temp2{1}(1)),str2double(temp2{1}(2))}(1,:)=full(temp.irdiff); %#ok<AGROW> temp3{str2double(temp2{1}(1)),str2double(temp2{1}(2))}(2,:)=full(temp.irdirect); %#ok<AGROW> temp3{str2double(temp2{1}(1)),str2double(temp2{1}(2))}(3,:)=full(temp.irgeom); %#ok<AGROW> clear temp temp2 end end delete([outdir filesep names_aft{n}]) end end if nargout>1 varargout(1)={temp3}; end