Mercurial > hg > human-echolocation
diff simulateBinauralSignals.m @ 8:aeb703465220
added simulateBinauralSignals.m
author | Timos Papadopoulos <tp@isvr.soton.ac.uk> |
---|---|
date | Mon, 25 Nov 2013 17:29:43 +0000 |
parents | |
children | d9262cdbfb38 dbefe500e5f4 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/simulateBinauralSignals.m Mon Nov 25 17:29:43 2013 +0000 @@ -0,0 +1,513 @@ +function simulateBinauralSignals(inputstruct) +%Creates .wav file of 2sec long binaural signals for specific board dimensions and gaussian white noise stimulus +% +% The .wav is created in the current directory with filename is 'binsimecho.wav' +% +% INPUTS: +% The input must be a structure with fields: +% .dist (1st input argument) is the distance in meters +% .azim (2nd input argument) is the azimuth in degrees (0 means straight ahead, positive angles are left and negative +% are right) +% .orient (3rd input argument) must be either 'horz' or 'angled' corresponding to flat and angled descriptions in +% Papadopoulos et al. BSPC 2011. +% .dirweight (4tht input argument) must be a nonnegative real scalar determining what is the relative weight of the +% emission path to the echo path (i.e. due to directivity focus in the frontal direction of the source, the emission +% which is directed upwards and backwards in our specific geometry is significantly attenuated, typically by factor in +% the vicinity of 0.2) +% + +%% Internal workings description +% +% Center of spherical coordinates system is taken to be the center of head. The azimuth, elevation and distance +% coordinates are as in matlabs sph2cart function (azimuth and elevation are angular displacements from the positive +% x-axis and from the x-y plane, respectively) with positive x axis taken to be extending to the right of the head from +% top view, positive y axis to be extending forward of the head in top view and positive z axis to be extending upwards +% in top view. +% +% Board dimensions are defined as +% params.board_size_x (width in meters for the 'center' orientation of Papadopoulos et al. BSPC 2011) +% params.board_size_y (depth in meters for the 'center' orientation of Papadopoulos et al. BSPC 2011) +% params.board_size_z (height in meters for the 'center' orientation of Papadopoulos et al. BSPC 2011) +% +% Board center position is defined as +% params.board_distance (distance in meters from coords origin to center of board following coordinate system described +% above), can be row vector. +% params.board_azim (azimuth in radians of the center of the board following coordinate system described above), +% can be row vector. +% params.board_elev (elevation in radians of the center of the board following coordinate system described above), +% must be scalar +% +% params.board_orientation scalar or 1x2 cell with elements 'horz' or/and 'angled' +% Board is taken to always be vertically positioned (i.e. with its width-height plane vertical to the y coordinate) and +% two cases of orientation are considered: horizontal and angled corresponding to flat and angled descriptions in +% Papadopoulos et al. BSPC 2011. +% +% params.source_down non-negative scalar in meters +% params.source_front non-negative scalar in meters +% The source is assumed to always be in front of the chest and below the head. (params.source_down and +% params.source_front cannot both be 0) +% +% +% params.horz_disamb string which can be either 'BSPC2011' or 'collocated'. If equal to 'BSPC2011' then board distance +% for the horizontal (flat) case is as described in Papadopoulos et al. BSPC 2011, i.e. the board +% distance is the distance between the centre of the head and the PLANE OF THE BOARD. +% Alternatively, in the 'collocated' case, the board distance in the horizontal (flat) case is taken +% as the distance between the centre of the head and the centre of the board +% +% NOTE: in the 'BSPC2011' case of params.horz_disamb, it is easy to see that the geometry is ill-specified for board +% positions far away from the median plane. +% +% OUTPUTS: +% +% --- simulation_data is a structure with the following fields: +% - simulation_data.echo is a cell of dimensions +% length(params.board_dist) x length(params.board_azim) x length(params.board_orientation) +% each element of which is a 2-row matrix with the left (top row) and right (bottom row) ear responses corresponding the +% echo only. +% +% - simulation_data.emission is a cell of dimensions +% length(params.board_dist) x length(params.board_azim) x length(params.board_orientation) +% each element of which is a 2-row matrix with the left (top row) and right (bottom row) ear responses corresponding the +% direct source-to-receiver path only. (NOTE: source term (binaural_irs_emission) does not need to be computed for each +% different board distance/azimuth/orientation as it is the same irs but containing a different number of trailing zero +% samples. I include this redundancy because it simplified the computation a bit and also because this way the emission +% part is always equal in length with the corresponding echo part and can be added easier) +% +% Adding any given +% directivity_weighting * simulation_data.emission{ii,jj,kk}(1,:) + simulation_data.echo{ii,jj,kk}(1,:) +% for any given ii, jj, kk will give the total left ear IR and the same for right ear by +% directivity_weighting * simulation_data.emission{ii,jj,kk}(2,:) + simulation_data.echo{ii,jj,kk}(2,:) +% +% - simulation_data.params is the stucture params described above +% - simulation_data.board_coords is an array of dimensions +% 8 x 3 x length(params.board_dist) x length(params.board_azim) x length(params.board_orientation) +% containing the x y z coordinates (2nd dimension) of the 8 edges (1st dimension) of the board geometries for different +% board distances, azimuths and orientations. +% - simulation_data.azerr and simulation_data.elerr are arrays of dimensions +% 2 x 1+length(params.board_azim)) +% which contain the error (in degrees) between the azimuth and elevation respectively of the HRTFs that are used (as +% existing in the CIPIC spherical grid) and the actual board center azimuth and elevation. +% +% +% +% DEVELOPMENT NOTES +% +% TODO: include case of multiple boards and of non-vertically oriented boards (i.e. all cases of pitch, roll, yaw for +% board orientation) +% +% TODO: include geometrical description for all possible positions of the source +% +% TODO: include validateattributes for all parameters +% +% TODO: include parameter controls for specorder (now set to 1), difforder (now set to 1), elemsize (now set to [1]) and +% nedgesubs (now set to 2) +% +% + +%% Take inputs args from input structure +dist = inputstruct.dist; +azim = inputstruct.azim; +orient = inputstruct.orient; +dirweight = inputstruct.dirweight; + +%% Validate attributes +validateattributes(dist,{'double'},{'scalar','>',0}) +validateattributes(azim,{'double'},{'scalar','<=',90,'>=',-90}) +validateattributes(orient,{'char'},{'nonempty'}) +validateattributes(dirweight,{'double'},{'scalar','>',0}) + +%% Computation parameters (Some fixed, some taken from input arguments) +params.board_size_x = .55; +params.board_size_y = .02; +params.board_size_z = .55; + +params.board_azim = mod(90+azim,360)*pi/180; +params.board_elev = 0*pi/180; +params.board_dist = dist; +% +% params.board_azim = mod(90+[-17 17],360)*pi/180; % corresponds to a board 17degress to the right and a board 17 +% degrees to the left. The elements of the vector ([-17 17] in this example) must be in the range (-180,180] and are +% converted by the line in this example to the coordinate system described in the help preample. +% +% params.board_elev = 10*pi/180; % corresponds to a board 10 degrees above the azimuthal plane. The value (0 in this +% example) must be in the range [-90,90] and is converted by the line in this example to the coordinate system described +% in the help preample. +% +% params.board_dist is in meters and it can be a vector of (strictly positive) distances as needed + +params.board_orientation = {validatestring(orient,{'horz','angled'})}; + +params.source_down = 0.25; % Take the source to always be directly below the chin. +params.source_front = 0.05; % Take the source to always be directly in front of chest. + +params.Fs = 44100; +params.Cair = 344; +params.Rhoair = 1.21; +params.WavDurationSec = 2; +params.WavScaling = 0.1; +params.dirweight = dirweight; + +params.horz_disamb = 'BSPC2011'; +params.wavfilename = 'binsimecho.wav'; + +%% Compute free field (no head) IRs + +temp_edges = [ + +params.board_size_x/2 +params.board_size_y/2 +params.board_size_z/2 + -params.board_size_x/2 +params.board_size_y/2 +params.board_size_z/2 + -params.board_size_x/2 -params.board_size_y/2 +params.board_size_z/2 + +params.board_size_x/2 -params.board_size_y/2 +params.board_size_z/2 + +params.board_size_x/2 +params.board_size_y/2 -params.board_size_z/2 + -params.board_size_x/2 +params.board_size_y/2 -params.board_size_z/2 + -params.board_size_x/2 -params.board_size_y/2 -params.board_size_z/2 + +params.board_size_x/2 -params.board_size_y/2 -params.board_size_z/2 + ]; + +FFresp{length(params.board_dist),length(params.board_azim),length(params.board_orientation)} = []; +binaural_irs_echo{length(params.board_dist),length(params.board_azim),length(params.board_orientation)} = []; +binaural_irs_emission{length(params.board_dist),length(params.board_azim),length(params.board_orientation)} = []; +% NOTE: in the above initialisation the source term (binaural_irs_emission) does not need to be computed for each +% different board distance/azimuth/orientation as it is the same. I include this redundancy so that the emission +% binaural irs that I compute each time in in a few lines are correct, i.e. I can check that all the binaural responses +% in the binaural_irs_emission cell are equal. +board_coords(8,3,length(params.board_dist),length(params.board_azim),length(params.board_orientation)) = 0; + + +geom.Fs = params.Fs; +geom.Cair = params.Cair; +geom.Rhoair = params.Rhoair; + +geom.source_position = [0 params.source_front -params.source_down]; + +for ii = 1:length(params.board_dist) + for jj = 1:length(params.board_azim) + for kk = 1:length(params.board_orientation) + + if strcmp(params.board_orientation{kk},'angled') + theta_angled = params.board_azim(jj) - pi/2; + Rot_mat = [ + cos(theta_angled) -sin(theta_angled) 0 + sin(theta_angled) cos(theta_angled) 0 + 0 0 1 + ]; + temp2_edges = ( Rot_mat * temp_edges.' ) .' ; + % for the rotation matrix see http://en.wikipedia.org/wiki/Rotation_matrix + [trans_x, trans_y, trans_z] = sph2cart(params.board_azim(jj),params.board_elev,params.board_dist(ii)); + geom.scatterer_edges = ... + temp2_edges + repmat([trans_x, trans_y, trans_z],8,1); + board_coords(:,:,ii,jj,kk) = geom.scatterer_edges; + elseif strcmp(params.board_orientation{kk},'horz') + temp2_edges = temp_edges; + if strcmp(params.horz_disamb,'collocated') + [trans_x, trans_y, trans_z] = sph2cart(params.board_azim(jj),params.board_elev,params.board_dist(ii)); + elseif strcmp(params.horz_disamb,'BSPC2011') + [trans_x, trans_y, trans_z] = sph2cart(... + params.board_azim(jj),... + params.board_elev,... + params.board_dist(ii)/abs(cos(params.board_azim(jj)-pi/2))); + else + error('params.horz_disamb must be set to either ''BSPC2011'' or ''collocated''') + end + geom.scatterer_edges = ... + temp2_edges + repmat([trans_x, trans_y, trans_z],8,1); + board_coords(:,:,ii,jj,kk) = geom.scatterer_edges; + end + + FFresp(ii,jj,kk) = edhrir_single_cuboid(geom); + + end + end +end + +%% Compute binaural IRs + +temp = load('hrir_final.mat'); %This is subject_165 CIPIC data +h3D_lear = temp.hrir_l; +h3D_rear = temp.hrir_r; +clear temp + +cipic_source_az = 0*180/pi; +cipic_source_el = atan(-params.source_down/params.source_front)*180/pi; +[source_lear_ir, azerr(1,1+length(params.board_azim)), elerr(1,1+length(params.board_azim))] = ... + getNearestUCDpulse(cipic_source_az,cipic_source_el,h3D_lear); +[source_rear_ir, azerr(2,1+length(params.board_azim)), elerr(2,1+length(params.board_azim))] = ... + getNearestUCDpulse(cipic_source_az,cipic_source_el,h3D_rear); + +% NOTE: in the following computation the source term (binaural_irs_emission) does not need to be computed for each +% different board distance/azimuth/orientation as it is the same. I include the redundancy as a check that the geometry +% modelling and computations are correct, i.e. I can check that all the binaural responses in the binaural_irs_emission +% cell are equal. + +for ii = 1:length(params.board_azim) + + cipic_board_az = 90-params.board_azim(ii)*180/pi; + cipic_board_el = params.board_elev*180/pi; + [lear_ir, azerr(1,ii), elerr(1,ii)] = getNearestUCDpulse(cipic_board_az,cipic_board_el,h3D_lear); + [rear_ir, azerr(2,ii), elerr(2,ii)] = getNearestUCDpulse(cipic_board_az,cipic_board_el,h3D_rear); + + for jj = 1:length(params.board_dist) + for kk = 1:length(params.board_orientation) + + binaural_irs_emission{jj,ii,kk}(1,:) = fftconv(source_lear_ir,FFresp{jj,ii,kk}(2,:)); %source term + binaural_irs_emission{jj,ii,kk}(2,:) = fftconv(source_rear_ir,FFresp{jj,ii,kk}(2,:)); %source term + + binaural_irs_echo{jj,ii,kk}(1,:) = fftconv(lear_ir,FFresp{jj,ii,kk}(1,:)+FFresp{jj,ii,kk}(3,:)); + %board echo term + binaural_irs_echo{jj,ii,kk}(2,:) = fftconv(rear_ir,FFresp{jj,ii,kk}(1,:)+FFresp{jj,ii,kk}(3,:)); + %board echo term + + end + end +end + +simulation_data.echo = binaural_irs_echo; +simulation_data.emission =binaural_irs_emission; +simulation_data.params = params; +simulation_data.board_coords = board_coords; +simulation_data.azerr = azerr; +simulation_data.elerr = elerr; + +%% Compute binaural signals and save binaural wav file + +binaural_ir = params.dirweight*simulation_data.emission{1,1,1} + simulation_data.echo{1,1,1}; +stim = params.WavScaling*randn(1,params.WavDurationSec*params.Fs); +temp = [fftfilt(binaural_ir(1,:),stim);fftfilt(binaural_ir(2,:),stim)].'; +if max(max(abs(temp))) > 1 + warning('wavfile clipped') +end +audiowrite(params.wavfilename,temp,params.Fs); + +%% Subfunctions + +function [pulse, azerr, elerr] = getNearestUCDpulse(azimuth,elevation,h3D) +azimuth = pvaldeg(azimuth); +elevation = pvaldeg(elevation); + +elmax = 50; +elindices = 1:elmax; +elevations = -45 + 5.625*(elindices - 1); +el = round((elevation + 45)/5.625 + 1); +el = max(el,1); +el = min(el,elmax); +elerr = pvaldeg(elevation - elevations(el)); + +azimuths = [-80 -65 -55 -45:5:45 55 65 80]; +[azerr, az] = min(abs(pvaldeg(abs(azimuths - azimuth)))); + +pulse = squeeze(h3D(az,el,:)); + +function angle = pvaldeg(angle) +dtr = pi/180; +angle = atan2(sin(angle*dtr),cos(angle*dtr))/dtr; +if angle < - 90 + angle = angle + 360; +end + +function out=fftconv(in1,in2) +% +% Computes the convolution output out of the input vectors in1 and in2 +% either with time-domain convolution (as implemented by conv) or by +% frequency-domain filtering (as implemented by zero-padded fftfilt). +% +% out=fftconv(in1,in2) +% +in1=in1(:).';in2=in2(:).'; + +if (length(in1)>100 && length(in2)>100) + if length(in1)>=length(in2) + out=fftfilt(in2,[in1 zeros(1,length(in2)-1)]); + else + out=fftfilt(in1,[in2 zeros(1,length(in1)-1)]); + end +else + out=conv(in1,in2); +end + +function ir_matrix=edhrir_single_cuboid(geom) +% +% Matrix of irs for a single cuboid scatterer using EDTB +% +% Works for external geometry. Definition of corners and planes in the created CAD file should be pointing outwards (in +% cartesian coordinates as defined below). +% +% x coordinate (increasing to right in top view, right hand thumb) +% y coordinate (increasing in front in top view, right hand index) +% z coordinate (increasing upwards in top view, right hand middle) +% +% For more details about geometry description see the main help preample. +% +% geom input parameter should be a structure with the following fields: +% +% geom.scatterer_edges is a 8x3 matrix with elements: +% x y z coordinates of back right top edge (point 1) +% x y z coordinates of back left top edge (point 2) +% x y z coordinates of front left top edge (point 3) +% x y z coordinates of front right top edge (point 4) +% x y z coordinates of back right bottom edge (point 1) +% x y z coordinates of back left bottom edge (point 2) +% x y z coordinates of front left bottom edge (point 3) +% x y z coordinates of front right bottom edge (point 4) +% +% (or any sequence of rotations of a cuboid with edges as above) +% +% geom.source_position (Single) source coordinates in cartesian system defined 1x3 positive real vector. (Single) +% receiver always taken to be at coordinates origin (0,0,0) +% +% geom.Fs +% geom.Cair +% geom.Rhoair +% + +%% 1 +temp_filename=['a' num2str(now*1e12,'%-24.0f')]; + +fid=fopen([temp_filename '.cad'],'w'); +% TODO add onCleanup to fclose this file +fprintf(fid,'%%CORNERS\n\n'); +fprintf(fid,'%.0f %9.6f %9.6f %9.6f\n',... + 1, geom.scatterer_edges(1,1), geom.scatterer_edges(1,2), geom.scatterer_edges(1,3),... + 2, geom.scatterer_edges(2,1), geom.scatterer_edges(2,2), geom.scatterer_edges(2,3),... + 3, geom.scatterer_edges(3,1), geom.scatterer_edges(3,2), geom.scatterer_edges(3,3),... + 4, geom.scatterer_edges(4,1), geom.scatterer_edges(4,2), geom.scatterer_edges(4,3),... + 5, geom.scatterer_edges(5,1), geom.scatterer_edges(5,2), geom.scatterer_edges(5,3),... + 6, geom.scatterer_edges(6,1), geom.scatterer_edges(6,2), geom.scatterer_edges(6,3),... + 7, geom.scatterer_edges(7,1), geom.scatterer_edges(7,2), geom.scatterer_edges(7,3),... + 8, geom.scatterer_edges(8,1), geom.scatterer_edges(8,2), geom.scatterer_edges(8,3)); +fprintf(fid,'\n%%PLANES\n'); +fprintf(fid,'\n1 / /RIGID\n1 2 3 4\n'); +fprintf(fid,'\n2 / /RIGID\n5 8 7 6\n'); +fprintf(fid,'\n3 / /RIGID\n1 4 8 5\n'); +fprintf(fid,'\n4 / /RIGID\n1 5 6 2\n'); +fprintf(fid,'\n5 / /RIGID\n2 6 7 3\n'); +fprintf(fid,'\n6 / /RIGID\n7 8 4 3\n'); +fprintf(fid,'\n%%EOF'); +fclose(fid); + +fid=fopen([temp_filename '_setup.m'],'wt'); +% TODO add onCleanup to fclose this file +fprintf(fid,'\n global FSAMP CAIR RHOAIR SHOWTEXT'); +fprintf(fid,['\n FSAMP = ' num2str(geom.Fs) ';']); +fprintf(fid,['\n CAIR = ' num2str(geom.Cair) ';']); +fprintf(fid,['\n RHOAIR = ' num2str(geom.Rhoair) ';']); +fprintf(fid,'\n SHOWTEXT = 0;'); +fprintf(fid,'\n SUPPRESSFILES = 0;'); +temp = strrep([cd filesep],'\','\\'); +fprintf(fid,['\n Filepath=''''''' temp ''''''';']); +fprintf(fid,['\n Filestem=''' temp_filename ''';']); +fprintf(fid,['\n CADfile=''' temp temp_filename '.cad'';']); +fprintf(fid,'\n open_or_closed_model = ''open'';'); +fprintf(fid,'\n int_or_ext_model = ''ext'';'); +fprintf(fid,'\n EDcalcmethod = ''n'';'); +fprintf(fid,'\n directsound = 1;'); +fprintf(fid,'\n specorder = 1;'); +fprintf(fid,'\n difforder = 1;'); +fprintf(fid,'\n elemsize = [1];'); +fprintf(fid,'\n nedgesubs = 2;'); +fprintf(fid,'\n calcpaths = 1;'); +fprintf(fid,'\n calcirs = 1;'); +fprintf(fid,'\n sources=['); +for n=1:1 + fprintf(fid,['\n' num2str(geom.source_position(1)) ' ' ... + num2str(geom.source_position(2)) ' ' ... + num2str(geom.source_position(3))]); +end +fprintf(fid,'\n ];'); +fprintf(fid,'\n receivers=['); +for n=1:1 + fprintf(fid,'\n 0 0 0'); +end +fprintf(fid,'\n ];'); +fprintf(fid,'\n skipcorners = 1000000;'); +fprintf(fid,'\n Rstart = 0;'); + +fclose(fid); + +pause(1); + +[~, ir_matrix]=myver_edtb([cd filesep temp_filename '_setup.m']); + +delete([temp_filename '.cad']); +delete([temp_filename '_setup.m']); + +function [ir,varargout]=myver_edtb(EDsetupfile) +% implements the computation of EDToolbox (by Peter Svensson) with a front-end +% designed for my needs. +% +% Takes one input which a setup file as specified by Svensson and gives +% either one vector output (which is the irtot output of Svensson's implementation for +% the first source and first receiver in the input "EDsetupfile" setup file) or +% two outputs, the first as above and the second being a {NxM} cell (N the number +% of sources and M the number of receivers) each element of which is a 4xL matrix +% with its 4 rows being the irdiff, irdirect, irgeom and irtot outputs of Svensson's +% computation for the corresponding source and receiver. +% +% The code deletes all other .mat files created by Svensson's +% implementation. +% +% [ir ir_all_data]=myver_edtb(EDsetupfile); + +%keep record of files in the current directory before computation +dir_bef=dir; +ir=1; + +%run computation +EDB1main(EDsetupfile); + +%get files list in the current directory after computation +dir_aft=dir; + +%get all genuine files (excluding other directories) in current directory +%after computation +k=1; +for n=1:size(dir_aft,1) + if(~dir_aft(n).isdir) + names_aft{k}=dir_aft(n).name;k=k+1; %#ok<AGROW> + end +end + +%get all genuine files (excluding other directories) in current directory +%before computation +k=1; +for n=1:size(dir_bef,1) + if(~dir_bef(n).isdir) + names_bef{k}=dir_bef(n).name;k=k+1; %#ok<AGROW> + end +end + +%get irtot for 1st source 1st receiver and delete files created by +%computation. +% for n=1:length(names_aft) +% if ~strcmp(names_aft(n),names_bef) +% if ~isempty(strfind(names_aft{n},'_1_1_ir.mat')) +% temp=load(names_aft{n}); +% ir=full(temp.irtot); +% clear temp +% end +% delete(names_aft{n}) +% end +% end +for n=1:length(names_aft) + if ~strcmp(names_aft(n),names_bef) + if ~isempty(strfind(names_aft{n},'_1_1_ir.mat')) + temp=load(names_aft{n}); + ir=full(temp.irtot); + clear temp + end + if nargout>1 + if ~isempty(strfind(names_aft{n},'_ir.mat')) + temp=load(names_aft{n}); + temp2=regexp(regexp(names_aft{n},'_\d*_\d*_','match'),'\d*','match'); + temp3{str2double(temp2{1}(1)),str2double(temp2{1}(2))}(4,:)=full(temp.irtot); %#ok<AGROW> + temp3{str2double(temp2{1}(1)),str2double(temp2{1}(2))}(1,:)=full(temp.irdiff); %#ok<AGROW> + temp3{str2double(temp2{1}(1)),str2double(temp2{1}(2))}(2,:)=full(temp.irdirect); %#ok<AGROW> + temp3{str2double(temp2{1}(1)),str2double(temp2{1}(2))}(3,:)=full(temp.irgeom); %#ok<AGROW> + clear temp temp2 + end + end + delete(names_aft{n}) + end +end +if nargout>1 + varargout(1)={temp3}; +end +