Mercurial > hg > gpsynth
view src/population.cpp @ 0:add35537fdbb tip
Initial import
author | irh <ian.r.hobson@gmail.com> |
---|---|
date | Thu, 25 Aug 2011 11:05:55 +0100 |
parents | |
children |
line wrap: on
line source
// Copyright 2011, Ian Hobson. // // This file is part of gpsynth. // // gpsynth is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // gpsynth is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with gpsynth in the file COPYING. // If not, see http://www.gnu.org/licenses/. #include "population.hpp" #include "boost_ex.hpp" #include "graph_helpers.hpp" #include "logger.hpp" #include "statistics.hpp" #include "std_ex.hpp" #include "boost/bind.hpp" #include "boost/filesystem.hpp" #include "boost/lexical_cast.hpp" #include "boost/math/special_functions/fpclassify.hpp" #include <algorithm> #include <cmath> #include <fstream> #include <iterator> #include <limits> #include <map> #include <numeric> #include <set> #include <sstream> #include <vector> namespace bf = boost::filesystem; namespace { const std::string g_default_work_folder = "/tmp"; // mutated graphs might have imported parameters outside of the graph's range // or removed parameter inputs making some parameters redundant void UpdateParameters(sg::Graph& graph) { std::size_t parameter_count = graph[boost::graph_bundle].parameters_.size(); // scan through vertices to find parameter inputs std::map<int, std::vector<sg::Vertex> > parameters; sg::VertexIterator vertex; sg::VertexIterator vertex_end; for (boost::tie(vertex, vertex_end) = boost::vertices(graph); vertex != vertex_end; ++vertex) { const sg::Node& node_info = graph[*vertex]; if (node_info.type_ == sg::kParameter) { parameters[node_info.id_].push_back(*vertex); } } // check if any corrections required if (parameters.size() == parameter_count) { if (parameter_count == 0) { // no parameters in the graph, nothing to do return; } // check that last parameter id is correct, otherwise corrections are needed if (parameters.rbegin()->first == (parameter_count)) { // all seems well, get out of here return; } } else if (parameters.size() > parameter_count) { // add extra parameters to the graph std::generate_n(std::back_inserter(graph[boost::graph_bundle].parameters_), parameters.size() - parameter_count, stdx::RandomCoefficient); } else { // remove redundant parameters graph[boost::graph_bundle].parameters_.resize(parameters.size()); } // reassign parameter ids through the graph int parameter_id = 1; typedef std::map<int, std::vector<sg::Vertex> >::value_type ParameterMapping; foreach (ParameterMapping p, parameters) { foreach (sg::Vertex v, p.second) { graph[v].id_ = parameter_id; } ++parameter_id; } // job done } } // namespace Population::Population(GrammarInterface* grammar, ConverterInterface* converter, EvaluatorInterface* evaluator) : grammar_(grammar), converter_(converter), evaluator_(evaluator), generation_(0), max_generations_(0), fitness_threshold_(0), tournament_size_(7), crossover_rate_(0.65), mutation_rate_(0.3), reproduce_best_(false), keep_temp_folders_(false) { evaluator_->SetListener(this); mutators_.push_back(boost::bind(&GrammarInterface::MutationReplaceSubTree, grammar, _1)); mutators_.push_back(boost::bind(&GrammarInterface::MutationAddSubTree, grammar, _1)); mutators_.push_back(boost::bind(&GrammarInterface::MutationModifyInputs, grammar, _1)); mutators_.push_back(boost::bind(&GrammarInterface::MutationModifyConnections, grammar, _1)); mutators_.push_back(boost::bind(&GrammarInterface::MutationReplaceCommand, grammar, _1)); // mutators_.push_back(boost::bind(&GrammarInterface::MutationInsertCommand, // grammar, _1)); SetupGeneticOperationSelector(); SetWorkFolder(g_default_work_folder); } void Population::SetWorkFolder(const std::string &path) { work_folder_ = path; log_folder_ = path + "/logs"; render_folder_ = path + "/render"; dot_folder_ = path + "/dot"; export_folder_ = path + "/export"; } void Population::Evolve(int max_generations) { max_generations_ = max_generations; // make sure the folders for storing best outputs are created bf::create_directories(render_folder_); bf::create_directories(dot_folder_); bf::create_directories(export_folder_); bf::create_directories(log_folder_); for (generation_ = 1; generation_ <= max_generations; generation_++) { NewGenerationMessage(); SetGenerationFolder(); ExportToDOT(); EvaluateGeneration(); AnalyzeGeneration(); SaveGenerationBest(); CleanTempFolders(); if (CheckThreshold()) { logger::Log("Fitness threshold reached\n"); return; } BreedNewGeneration(); } } void Population::NewGenerationMessage() const { std::stringstream message; message << "Generation " << generation_ << '\n'; logger::Log(message.str()); } void Population::SetGenerationFolder() { std::stringstream path; path << work_folder_ << "/generation_" << std::setw(std::log10(max_generations_) + 1) << std::setfill('0') << generation_ << '/'; generation_folder_ = path.str(); } bool Population::CheckThreshold() const { double best_fitness = population_[best_fit_][boost::graph_bundle].fitness_; return best_fitness <= fitness_threshold_; } void Population::CleanTempFolders() const { if (!keep_temp_folders_) { bf::remove_all(generation_folder_); } } void Population::InitializePopulation(std::size_t size) { population_.resize(size); fitnesses_.resize(size); for (int i = 0; i < size; i++) { grammar_->RandomGraph(population_[i]); population_[i][boost::graph_bundle].id_ = i; } } void Population::EvaluateGeneration() { // make sure we have a clean temp folder for the generation bf::remove_all(generation_folder_); evaluator_->SetWorkFolder(generation_folder_); evaluator_->RateGraphs(population_); logger::Log("\n"); // store graph fitnesses for (std::size_t i = 0, size = population_.size(); i < size; i++) { fitnesses_[i] = population_[i][boost::graph_bundle].fitness_; } } void Population::AnalyzeGeneration() { double mean_fitness = stats::Mean(fitnesses_.begin(), fitnesses_.end()); if (boost::math::isnan(mean_fitness)) { logger::Log("ruh roh\n"); // TODO } std::stringstream message; std::vector<double>::const_iterator best_fitness; best_fitness = std::min_element(fitnesses_.begin(), fitnesses_.end()); best_fit_ = static_cast<int>(best_fitness - fitnesses_.begin()); message << "Average Fitness:" << mean_fitness << " Best" //<< " [" << best_fit_ << "]" << ':' << *best_fitness << '\n'; logger::Log(message.str()); // save fitness values to logs std::stringstream average; average << generation_ << ' ' << mean_fitness; stdx::AppendToFile(average.str(), log_folder_ + "/average_fitnesses.txt"); std::stringstream best; best << generation_ << ' ' << *best_fitness; stdx::AppendToFile(best.str(), log_folder_ + "/best_fitnesses.txt"); } void Population::SaveGenerationBest() { std::stringstream generation_prefix; generation_prefix << "generation_" << std::setw(std::log10(max_generations_) + 1) << std::setfill('0') << generation_; const sg::Graph& best_graph = population_[best_fit_]; const sg::GraphProperties& graph_properties = best_graph[boost::graph_bundle]; // copy the rendered output for the graph bf::path path = graph_properties.render_path_; if (bf::exists(path)) { std::string render_path = render_folder_ + '/' + generation_prefix.str() + path.extension().string(); bf::copy_file(path, render_path); } // copy the dot script for the graph path = graph_properties.dot_path_; if (bf::exists(path)) { std::string dot_path = dot_folder_ + '/' + generation_prefix.str() + path.extension().string(); bf::copy_file(path, dot_path); } // tell the converter to export the graph converter_->Export(best_graph, export_folder_, generation_prefix.str()); } void Population::PerformCrossover(sg::Graph& child_1, sg::Graph& child_2) { int parent_id_1 = SelectIndividual(); int parent_id_2; do { parent_id_2 = SelectIndividual(); } while (parent_id_1 == parent_id_2); // pick the crossover points via the grammar const sg::Graph& parent_1 = population_[parent_id_1]; const sg::Graph& parent_2 = population_[parent_id_2]; sg::Vertex crossover_1; sg::Vertex crossover_2; grammar_->PickCrossoverNodes(parent_1, parent_2, &crossover_1, &crossover_2); // swap the subtrees SwapSubTrees(crossover_1, crossover_2, parent_1, parent_2, child_1, child_2); } // called for mutated graphs to prepare for next generation void Population::PrepareNewChild(sg::Graph& child) { // reset fitness rating child[boost::graph_bundle].fitness_ = sg::kFitnessUnrated; // make sure parameters in graph are valid UpdateParameters(child); } void Population::BreedNewGeneration() { // Used to store reproduced graph ids, prevents a graph being reproduced // more than once. std::set<int> reproduced; std::vector<sg::Graph> next_generation; next_generation.reserve(population_.size()); if (reproduce_best_) { next_generation.push_back(population_[best_fit_]); } std::size_t population_size = population_.size(); while (next_generation.size() < population_size) { GeneticOperation operation; operation = static_cast<GeneticOperation>(genetic_operation_selector_()); if (operation == kCrossover) { // Crossover // create two empty graphs to receive results of crossover // (creating them directly in the next_generation container causes // memory problems when performing crossover, couldn't fathom why..) sg::Graph child_1; sg::Graph child_2; PerformCrossover(child_1, child_2); PrepareNewChild(child_1); PrepareNewChild(child_2); next_generation.push_back(child_1); next_generation.push_back(child_2); } else if (operation == kMutation) { // mutation // store a copy of an individual from current population next_generation.push_back(population_[SelectIndividual()]); sg::Graph& child = next_generation.back(); // call random mutation operator on child bool mutated; do { // some mutators might not be able to operate on a specific graph // and will return false, so try another mutator mutated = mutators_[stdx::Random(mutators_.size())](child); } while (!mutated); PrepareNewChild(child); } else { // reproduction int graph_id = SelectIndividual(); // only reproduce the individual if it hasn't already been reproduced if (reproduced.find(graph_id) == reproduced.end()) { next_generation.push_back(population_[graph_id]); reproduced.insert(graph_id); } } } // we might have an extra individual from crossover next_generation.resize(population_size); // reassign graph ids for (std::size_t i = 0, size = population_.size(); i < size; i++) { next_generation[i][boost::graph_bundle].id_ = static_cast<int>(i); } // replace the population with the newly created generation population_.swap(next_generation); } // tournament selection int Population::SelectIndividual() { // select n individuals from the population std::set<std::size_t> tournament; while (tournament.size() < tournament_size_) { tournament.insert(stdx::Random(population_.size())); } double best_fitness = std::numeric_limits<double>::max(); std::size_t result = -1; // find best graph from selection foreach (std::size_t graph_id, tournament) { if (fitnesses_[graph_id] < best_fitness) { best_fitness = fitnesses_[graph_id]; result = graph_id; } } return static_cast<int>(result); } void Population::ExportToDOT() { std::string dot_folder = generation_folder_ + "/dot/"; bf::create_directories(dot_folder); std::stringstream path; foreach (sg::Graph& graph, population_) { path.str(""); path << dot_folder << "gpsynth_" << graph[boost::graph_bundle].id_ << ".dot"; std::ofstream file(path.str().c_str()); file << converter_->ToDOT(graph); file.close(); graph[boost::graph_bundle].dot_path_ = path.str(); } } void Population::GraphRatedNotification(std::size_t graphs_rated) { std::stringstream message; message << "\rRated " << graphs_rated << " / " << population_.size(); logger::Log(message.str()); } void Population::SetCrossoverRate(double rate) { crossover_rate_ = rate; SetupGeneticOperationSelector(); } void Population::SetMutationRate(double rate) { mutation_rate_ = rate; SetupGeneticOperationSelector(); } void Population::SetupGeneticOperationSelector() { std::vector<double> genetic_probabilities(2); genetic_probabilities[kCrossover] = crossover_rate_; genetic_probabilities[kMutation] = mutation_rate_; // reproduction is left over probability genetic_operation_selector_.SetProbabilities(genetic_probabilities); }