Mercurial > hg > from-my-pen-to-your-ears-supplementary-material
view results/data/saves/.ipynb_checkpoints/Untitled-checkpoint.ipynb @ 1:eb3b846ae0ef tip
second commit
author | Emmanouil Theofanis Chourdakis <e.t.chourdakis@qmul.ac.uk> |
---|---|
date | Wed, 16 May 2018 18:13:41 +0100 |
parents | 4dad87badb0c |
children |
line wrap: on
line source
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import glob\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "sns.set(style=\"ticks\", color_codes=True, font_scale=1.3)\n", "\n", "page1_df = pd.read_csv('ratings/page1-default-ratings.csv').set_index('file_keys')\n", "page2_df = pd.read_csv('ratings/page2-default-ratings.csv').set_index('file_keys')\n", "page3_df = pd.read_csv('ratings/page3-default-ratings.csv').set_index('file_keys')\n", "page4_df = pd.read_csv('ratings/page4-default-ratings.csv').set_index('file_keys')\n", "page5_df = pd.read_csv('ratings/page5-default-ratings.csv').set_index('file_keys')\n", "page6_df = pd.read_csv('ratings/page6-default-ratings.csv').set_index('file_keys')\n", "page7_df = pd.read_csv('ratings/page7-default-ratings.csv').set_index('file_keys')\n", "page8_df = pd.read_csv('ratings/page8-default-ratings.csv').set_index('file_keys')\n", "page9_df = pd.read_csv('ratings/page9-default-ratings.csv').set_index('file_keys')" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "renamedict = {k: k[1:] for k in page1_df.columns}\n", "page1 = page1_df.rename(columns=renamedict)\n", "page1['story'] = 'a'\n", "renamedict = {k: k[1:] for k in page2_df.columns}\n", "page2 = page2_df.rename(columns=renamedict)\n", "page2['story'] = 'b'\n", "renamedict = {k: k[1:] for k in page3_df.columns}\n", "page3 = page3_df.rename(columns=renamedict)\n", "page3['story'] = 'c'\n", "renamedict = {k: k[1:] for k in page4_df.columns}\n", "page4 = page4_df.rename(columns=renamedict)\n", "page4['story'] = 'a'\n", "renamedict = {k: k[1:] for k in page5_df.columns}\n", "page5 = page5_df.rename(columns=renamedict)\n", "page5['story'] = 'b'\n", "renamedict = {k: k[1:] for k in page6_df.columns}\n", "page6 = page6_df.rename(columns=renamedict)\n", "page6['story'] = 'c'\n", "renamedict = {k: k[1:] for k in page7_df.columns}\n", "page7 = page7_df.rename(columns=renamedict)\n", "page7['story'] = 'a'\n", "renamedict = {k: k[1:] for k in page8_df.columns}\n", "page8 = page8_df.rename(columns=renamedict)\n", "page8['story'] = 'b'\n", "renamedict = {k: k[1:] for k in page9_df.columns}\n", "page9 = page9_df.rename(columns=renamedict)\n", "page9['story'] = 'c'\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>0000</th>\n", " <th>0011</th>\n", " <th>1011</th>\n", " <th>1101</th>\n", " <th>1110</th>\n", " <th>1111</th>\n", " <th>story</th>\n", " </tr>\n", " <tr>\n", " <th>file_keys</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>IXHrDvdwYoDCO7bvwRMB7jD46hoWAjDi</th>\n", " <td>0.06</td>\n", " <td>0.13</td>\n", " <td>0.68</td>\n", " <td>0.71</td>\n", " <td>0.65</td>\n", " <td>0.65</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>iWogwaa7GooHWHcp8C0ZjRrTMDgcae0t</th>\n", " <td>0.00</td>\n", " <td>0.04</td>\n", " <td>0.95</td>\n", " <td>1.00</td>\n", " <td>0.80</td>\n", " <td>0.95</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>bOyRMU1QCcMqMpcjcHNBuVMF45oksQMD</th>\n", " <td>0.24</td>\n", " <td>0.24</td>\n", " <td>0.76</td>\n", " <td>0.75</td>\n", " <td>1.00</td>\n", " <td>0.76</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>U6mgdJX1DgAfYJ6DR7sKY0CL4YgcwZKq</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.83</td>\n", " <td>0.97</td>\n", " <td>0.86</td>\n", " <td>0.90</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>9UODgpqx7pTDhiiLm7ds39wh59aYBrHK</th>\n", " <td>0.06</td>\n", " <td>0.20</td>\n", " <td>0.72</td>\n", " <td>0.77</td>\n", " <td>0.55</td>\n", " <td>0.91</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>VyX492RQzqQXRL84PByL9pLt8C5p4c50</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.63</td>\n", " <td>0.87</td>\n", " <td>0.84</td>\n", " <td>1.00</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>bkHwhN78d7k2kIanOievgityZQD7gVOr</th>\n", " <td>0.08</td>\n", " <td>0.25</td>\n", " <td>0.93</td>\n", " <td>0.98</td>\n", " <td>0.78</td>\n", " <td>0.92</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>bKhIcFzfZ3YXPxNiw4E7kFyoTFAqeFTp</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>1.00</td>\n", " <td>0.76</td>\n", " <td>1.00</td>\n", " <td>0.77</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>ufohn9b31ZNI2zLGNqmmRYOMtIwiw6o1</th>\n", " <td>0.09</td>\n", " <td>0.10</td>\n", " <td>0.92</td>\n", " <td>0.91</td>\n", " <td>0.09</td>\n", " <td>0.92</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>fZGbsBmuEtrB35G2IzQu0IxOCVoljWpz</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>0.97</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>YMVW8vVq8kZbGFRMWn9ElJBJ38bVV5GU</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.95</td>\n", " <td>0.42</td>\n", " <td>0.92</td>\n", " <td>0.93</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>G2WO7k3tSjvBrlMG1Nqz4DsKBO8oaEcQ</th>\n", " <td>0.00</td>\n", " <td>0.14</td>\n", " <td>0.70</td>\n", " <td>0.54</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>OK2yLWD54tr3klqiS631VXjQlroZfmD3</th>\n", " <td>0.06</td>\n", " <td>0.03</td>\n", " <td>0.52</td>\n", " <td>1.00</td>\n", " <td>0.68</td>\n", " <td>0.89</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>t1Ybl1O1EAdpBEbxOLbaU4QlHtAcGCxa</th>\n", " <td>0.09</td>\n", " <td>0.11</td>\n", " <td>1.00</td>\n", " <td>0.99</td>\n", " <td>0.65</td>\n", " <td>0.54</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>JZaBaWCeuGjSAyoUrfwdASaIHXkHCZml</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.71</td>\n", " <td>0.83</td>\n", " <td>0.84</td>\n", " <td>0.93</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>uoBPmOWdbNI4uowtBZRZK8BIEUVvUn1o</th>\n", " <td>0.23</td>\n", " <td>0.23</td>\n", " <td>0.62</td>\n", " <td>1.00</td>\n", " <td>0.79</td>\n", " <td>0.84</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>lIOWKvmCLdlUhGFYwE3lOfizSeqtxyNT</th>\n", " <td>0.11</td>\n", " <td>0.24</td>\n", " <td>0.69</td>\n", " <td>1.00</td>\n", " <td>0.66</td>\n", " <td>0.83</td>\n", " <td>a</td>\n", " </tr>\n", " <tr>\n", " <th>IXHrDvdwYoDCO7bvwRMB7jD46hoWAjDi</th>\n", " <td>0.01</td>\n", " <td>0.02</td>\n", " <td>0.70</td>\n", " <td>0.68</td>\n", " <td>0.79</td>\n", " <td>0.75</td>\n", " <td>b</td>\n", " </tr>\n", " <tr>\n", " <th>iWogwaa7GooHWHcp8C0ZjRrTMDgcae0t</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>b</td>\n", " </tr>\n", " <tr>\n", " <th>bOyRMU1QCcMqMpcjcHNBuVMF45oksQMD</th>\n", " <td>0.00</td>\n", " <td>0.24</td>\n", " <td>0.76</td>\n", " <td>0.76</td>\n", " <td>0.76</td>\n", " <td>1.00</td>\n", " <td>b</td>\n", " </tr>\n", " <tr>\n", " <th>U6mgdJX1DgAfYJ6DR7sKY0CL4YgcwZKq</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.96</td>\n", " <td>0.91</td>\n", " <td>0.92</td>\n", " <td>0.92</td>\n", " <td>b</td>\n", " </tr>\n", " <tr>\n", " <th>9UODgpqx7pTDhiiLm7ds39wh59aYBrHK</th>\n", " <td>0.20</td>\n", " <td>0.29</td>\n", " <td>0.60</td>\n", " <td>0.96</td>\n", " <td>0.70</td>\n", " <td>0.81</td>\n", " <td>b</td>\n", " </tr>\n", " <tr>\n", " <th>VyX492RQzqQXRL84PByL9pLt8C5p4c50</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>0.81</td>\n", " <td>b</td>\n", " </tr>\n", " <tr>\n", " <th>bKhIcFzfZ3YXPxNiw4E7kFyoTFAqeFTp</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>1.00</td>\n", " <td>0.75</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>b</td>\n", " </tr>\n", " <tr>\n", " <th>ufohn9b31ZNI2zLGNqmmRYOMtIwiw6o1</th>\n", " <td>0.13</td>\n", " <td>0.08</td>\n", " <td>0.86</td>\n", " <td>0.95</td>\n", " <td>0.74</td>\n", " <td>0.76</td>\n", " <td>b</td>\n", " </tr>\n", " <tr>\n", " <th>fZGbsBmuEtrB35G2IzQu0IxOCVoljWpz</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.97</td>\n", " <td>0.99</td>\n", " <td>1.00</td>\n", " <td>0.61</td>\n", " <td>b</td>\n", " </tr>\n", " <tr>\n", " <th>G2WO7k3tSjvBrlMG1Nqz4DsKBO8oaEcQ</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.49</td>\n", " <td>1.00</td>\n", " <td>0.65</td>\n", " <td>0.82</td>\n", " <td>b</td>\n", " </tr>\n", " <tr>\n", " <th>OK2yLWD54tr3klqiS631VXjQlroZfmD3</th>\n", " <td>0.00</td>\n", " <td>0.03</td>\n", " <td>0.95</td>\n", " <td>1.00</td>\n", " <td>0.83</td>\n", " <td>0.83</td>\n", " <td>b</td>\n", " </tr>\n", " <tr>\n", " <th>t1Ybl1O1EAdpBEbxOLbaU4QlHtAcGCxa</th>\n", " <td>0.00</td>\n", " <td>0.15</td>\n", " <td>0.48</td>\n", " <td>0.76</td>\n", " <td>0.74</td>\n", " <td>0.87</td>\n", " <td>b</td>\n", " </tr>\n", " <tr>\n", " <th>D0Fq5YbSHwHaHK9V5pIWlIg5T6Ji3fQH</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.98</td>\n", " <td>0.74</td>\n", " <td>0.92</td>\n", " <td>0.91</td>\n", " <td>b</td>\n", " </tr>\n", " <tr>\n", " <th>uoBPmOWdbNI4uowtBZRZK8BIEUVvUn1o</th>\n", " <td>0.09</td>\n", " <td>0.10</td>\n", " <td>0.77</td>\n", " <td>1.00</td>\n", " <td>0.90</td>\n", " <td>1.00</td>\n", " <td>b</td>\n", " </tr>\n", " <tr>\n", " <th>lIOWKvmCLdlUhGFYwE3lOfizSeqtxyNT</th>\n", " <td>0.12</td>\n", " <td>0.11</td>\n", " <td>0.77</td>\n", " <td>0.92</td>\n", " <td>1.00</td>\n", " <td>0.90</td>\n", " <td>b</td>\n", " </tr>\n", " <tr>\n", " <th>IXHrDvdwYoDCO7bvwRMB7jD46hoWAjDi</th>\n", " <td>0.02</td>\n", " <td>0.01</td>\n", " <td>0.87</td>\n", " <td>0.98</td>\n", " <td>0.87</td>\n", " <td>0.93</td>\n", " <td>c</td>\n", " </tr>\n", " <tr>\n", " <th>iWogwaa7GooHWHcp8C0ZjRrTMDgcae0t</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.97</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>c</td>\n", " </tr>\n", " <tr>\n", " <th>bOyRMU1QCcMqMpcjcHNBuVMF45oksQMD</th>\n", " <td>0.00</td>\n", " <td>0.24</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>c</td>\n", " </tr>\n", " <tr>\n", " <th>U6mgdJX1DgAfYJ6DR7sKY0CL4YgcwZKq</th>\n", " <td>0.00</td>\n", " <td>0.00</td>\n", " <td>0.72</td>\n", " <td>0.85</td>\n", " <td>0.88</td>\n", " <td>0.66</td>\n", " <td>c</td>\n", " </tr>\n", " <tr>\n", " <th>VyX492RQzqQXRL84PByL9pLt8C5p4c50</th>\n", " <td>0.02</td>\n", " <td>0.00</td>\n", " <td>0.93</td>\n", " <td>0.82</td>\n", " <td>0.97</td>\n", " <td>0.83</td>\n", " <td>c</td>\n", " </tr>\n", " <tr>\n", " <th>bkHwhN78d7k2kIanOievgityZQD7gVOr</th>\n", " <td>0.18</td>\n", " <td>0.23</td>\n", " <td>0.89</td>\n", " <td>0.92</td>\n", " <td>0.95</td>\n", " <td>0.90</td>\n", " <td>c</td>\n", " </tr>\n", " <tr>\n", " <th>ufohn9b31ZNI2zLGNqmmRYOMtIwiw6o1</th>\n", " <td>0.07</td>\n", " <td>0.11</td>\n", " <td>0.77</td>\n", " <td>0.93</td>\n", " <td>0.87</td>\n", " <td>0.93</td>\n", " <td>c</td>\n", " </tr>\n", " <tr>\n", " <th>fZGbsBmuEtrB35G2IzQu0IxOCVoljWpz</th>\n", " <td>0.01</td>\n", " <td>0.00</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>0.97</td>\n", " <td>0.75</td>\n", " <td>c</td>\n", " </tr>\n", " <tr>\n", " <th>G2WO7k3tSjvBrlMG1Nqz4DsKBO8oaEcQ</th>\n", " <td>0.20</td>\n", " <td>0.20</td>\n", " <td>0.60</td>\n", " <td>1.00</td>\n", " <td>1.00</td>\n", " <td>0.75</td>\n", " <td>c</td>\n", " </tr>\n", " <tr>\n", " <th>OK2yLWD54tr3klqiS631VXjQlroZfmD3</th>\n", " <td>0.00</td>\n", " <td>0.07</td>\n", " <td>0.91</td>\n", " <td>0.97</td>\n", " <td>0.84</td>\n", " <td>0.73</td>\n", " <td>c</td>\n", " </tr>\n", " <tr>\n", " <th>D0Fq5YbSHwHaHK9V5pIWlIg5T6Ji3fQH</th>\n", " <td>0.10</td>\n", " <td>0.29</td>\n", " <td>0.51</td>\n", " <td>0.95</td>\n", " <td>0.52</td>\n", " <td>0.87</td>\n", " <td>c</td>\n", " </tr>\n", " <tr>\n", " <th>KBKzd0PezF8bsGoEZTkVkpmj1o8OECIo</th>\n", " <td>0.12</td>\n", " <td>0.66</td>\n", " <td>0.28</td>\n", " <td>0.05</td>\n", " <td>0.54</td>\n", " <td>0.44</td>\n", " <td>c</td>\n", " </tr>\n", " <tr>\n", " <th>uoBPmOWdbNI4uowtBZRZK8BIEUVvUn1o</th>\n", " <td>0.12</td>\n", " <td>0.14</td>\n", " <td>0.77</td>\n", " <td>1.00</td>\n", " <td>0.95</td>\n", " <td>0.97</td>\n", " <td>c</td>\n", " </tr>\n", " <tr>\n", " <th>lIOWKvmCLdlUhGFYwE3lOfizSeqtxyNT</th>\n", " <td>0.24</td>\n", " <td>0.12</td>\n", " <td>0.89</td>\n", " <td>0.82</td>\n", " <td>0.69</td>\n", " <td>0.90</td>\n", " <td>c</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " 0000 0011 1011 1101 1110 1111 story\n", "file_keys \n", "IXHrDvdwYoDCO7bvwRMB7jD46hoWAjDi 0.06 0.13 0.68 0.71 0.65 0.65 a\n", "iWogwaa7GooHWHcp8C0ZjRrTMDgcae0t 0.00 0.04 0.95 1.00 0.80 0.95 a\n", "bOyRMU1QCcMqMpcjcHNBuVMF45oksQMD 0.24 0.24 0.76 0.75 1.00 0.76 a\n", "U6mgdJX1DgAfYJ6DR7sKY0CL4YgcwZKq 0.00 0.00 0.83 0.97 0.86 0.90 a\n", "9UODgpqx7pTDhiiLm7ds39wh59aYBrHK 0.06 0.20 0.72 0.77 0.55 0.91 a\n", "VyX492RQzqQXRL84PByL9pLt8C5p4c50 0.00 0.00 0.63 0.87 0.84 1.00 a\n", "bkHwhN78d7k2kIanOievgityZQD7gVOr 0.08 0.25 0.93 0.98 0.78 0.92 a\n", "bKhIcFzfZ3YXPxNiw4E7kFyoTFAqeFTp 0.00 0.00 1.00 0.76 1.00 0.77 a\n", "ufohn9b31ZNI2zLGNqmmRYOMtIwiw6o1 0.09 0.10 0.92 0.91 0.09 0.92 a\n", "fZGbsBmuEtrB35G2IzQu0IxOCVoljWpz 0.00 0.00 1.00 1.00 1.00 0.97 a\n", "YMVW8vVq8kZbGFRMWn9ElJBJ38bVV5GU 0.00 0.00 0.95 0.42 0.92 0.93 a\n", "G2WO7k3tSjvBrlMG1Nqz4DsKBO8oaEcQ 0.00 0.14 0.70 0.54 1.00 1.00 a\n", "OK2yLWD54tr3klqiS631VXjQlroZfmD3 0.06 0.03 0.52 1.00 0.68 0.89 a\n", "t1Ybl1O1EAdpBEbxOLbaU4QlHtAcGCxa 0.09 0.11 1.00 0.99 0.65 0.54 a\n", "JZaBaWCeuGjSAyoUrfwdASaIHXkHCZml 0.00 0.00 0.71 0.83 0.84 0.93 a\n", "uoBPmOWdbNI4uowtBZRZK8BIEUVvUn1o 0.23 0.23 0.62 1.00 0.79 0.84 a\n", "lIOWKvmCLdlUhGFYwE3lOfizSeqtxyNT 0.11 0.24 0.69 1.00 0.66 0.83 a\n", "IXHrDvdwYoDCO7bvwRMB7jD46hoWAjDi 0.01 0.02 0.70 0.68 0.79 0.75 b\n", "iWogwaa7GooHWHcp8C0ZjRrTMDgcae0t 0.00 0.00 1.00 1.00 1.00 1.00 b\n", "bOyRMU1QCcMqMpcjcHNBuVMF45oksQMD 0.00 0.24 0.76 0.76 0.76 1.00 b\n", "U6mgdJX1DgAfYJ6DR7sKY0CL4YgcwZKq 0.00 0.00 0.96 0.91 0.92 0.92 b\n", "9UODgpqx7pTDhiiLm7ds39wh59aYBrHK 0.20 0.29 0.60 0.96 0.70 0.81 b\n", "VyX492RQzqQXRL84PByL9pLt8C5p4c50 0.00 0.00 1.00 1.00 1.00 0.81 b\n", "bKhIcFzfZ3YXPxNiw4E7kFyoTFAqeFTp 0.00 0.00 1.00 0.75 1.00 1.00 b\n", "ufohn9b31ZNI2zLGNqmmRYOMtIwiw6o1 0.13 0.08 0.86 0.95 0.74 0.76 b\n", "fZGbsBmuEtrB35G2IzQu0IxOCVoljWpz 0.00 0.00 0.97 0.99 1.00 0.61 b\n", "G2WO7k3tSjvBrlMG1Nqz4DsKBO8oaEcQ 0.00 0.00 0.49 1.00 0.65 0.82 b\n", "OK2yLWD54tr3klqiS631VXjQlroZfmD3 0.00 0.03 0.95 1.00 0.83 0.83 b\n", "t1Ybl1O1EAdpBEbxOLbaU4QlHtAcGCxa 0.00 0.15 0.48 0.76 0.74 0.87 b\n", "D0Fq5YbSHwHaHK9V5pIWlIg5T6Ji3fQH 0.00 0.00 0.98 0.74 0.92 0.91 b\n", "uoBPmOWdbNI4uowtBZRZK8BIEUVvUn1o 0.09 0.10 0.77 1.00 0.90 1.00 b\n", "lIOWKvmCLdlUhGFYwE3lOfizSeqtxyNT 0.12 0.11 0.77 0.92 1.00 0.90 b\n", "IXHrDvdwYoDCO7bvwRMB7jD46hoWAjDi 0.02 0.01 0.87 0.98 0.87 0.93 c\n", "iWogwaa7GooHWHcp8C0ZjRrTMDgcae0t 0.00 0.00 0.97 1.00 1.00 1.00 c\n", "bOyRMU1QCcMqMpcjcHNBuVMF45oksQMD 0.00 0.24 1.00 1.00 1.00 1.00 c\n", "U6mgdJX1DgAfYJ6DR7sKY0CL4YgcwZKq 0.00 0.00 0.72 0.85 0.88 0.66 c\n", "VyX492RQzqQXRL84PByL9pLt8C5p4c50 0.02 0.00 0.93 0.82 0.97 0.83 c\n", "bkHwhN78d7k2kIanOievgityZQD7gVOr 0.18 0.23 0.89 0.92 0.95 0.90 c\n", "ufohn9b31ZNI2zLGNqmmRYOMtIwiw6o1 0.07 0.11 0.77 0.93 0.87 0.93 c\n", "fZGbsBmuEtrB35G2IzQu0IxOCVoljWpz 0.01 0.00 1.00 1.00 0.97 0.75 c\n", "G2WO7k3tSjvBrlMG1Nqz4DsKBO8oaEcQ 0.20 0.20 0.60 1.00 1.00 0.75 c\n", "OK2yLWD54tr3klqiS631VXjQlroZfmD3 0.00 0.07 0.91 0.97 0.84 0.73 c\n", "D0Fq5YbSHwHaHK9V5pIWlIg5T6Ji3fQH 0.10 0.29 0.51 0.95 0.52 0.87 c\n", "KBKzd0PezF8bsGoEZTkVkpmj1o8OECIo 0.12 0.66 0.28 0.05 0.54 0.44 c\n", "uoBPmOWdbNI4uowtBZRZK8BIEUVvUn1o 0.12 0.14 0.77 1.00 0.95 0.97 c\n", "lIOWKvmCLdlUhGFYwE3lOfizSeqtxyNT 0.24 0.12 0.89 0.82 0.69 0.90 c" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "task1_df = page1.append(page2).append(page3)\n", "task2_df = page4.append(page5).append(page6)\n", "task3_df = page7.append(page8).append(page9)\n", "\n", "def transform_df(df):\n", " records = []\n", " for n in range(len(df)):\n", " for c in df.columns:\n", " if c not in ['file_keys', 'story']:\n", " records.append({\n", " 'stimulus': c,\n", " 'story': df['story'].iloc[n],\n", " 'preference': df[c].iloc[n]\n", " \n", " })\n", " \n", " return pd.DataFrame.from_records(records)\n", " \n", "task1_df" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "task1_transformed = transform_df(task1_df)\n", "task2_transformed = transform_df(task2_df)\n", "task3_transformed = transform_df(task3_df)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEICAYAAABVv+9nAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFtNJREFUeJzt3W+IXOWhx/GvN7aC8YXVRtd2EcXAI/viIq3/KIRLuxcu0uCLfXk3reZSQsuFELAxJC2agi+lLLlYLKXRpHcrNKU30Fr6QoLin+ufFgu1hgezNAm77FYriTGXdgOa+2LOxMm4M3vO7DxnZp/5ft7szplz5jz88uS3M2fOzLni4sWLSJLy80+DHoAkKQ0LXpIyZcFLUqYseEnKlAUvSZmy4CUpUxa8JGXKgpekTF1ZZqUQwhTwHeDLwOeAW2OMJxOOa2SYbTpmm5b5Dr+yz+A3Ai8C30s4llFltumYbVrmO+SuqPJVBSGE24HjrOEvdQjhKuAuYBH4qJfHyNRtwHPAvwAfA2/EGJerPIDZdtTMdguNbG6iYr5m25Vztx4bqDh3Sx2i6VUIYT/waMp9ZOiF4ucW4KVOK5ltT15s+b1jvmbbM+duPbrm22oQz+BvA07Mzs4yNjbWy0Nk6fTp02zfvp2ZmRl27doFsDnGOFflMcx2Zc1sZ2dnAZienoaK+ZptZ87deiwtLVWeu0mfwXfwEcDY2Bjj4+MD2P1wWl5uvOLatGlTc1EvL1PNdgXNbNuKo2q+ZtuBc7d2pfP1NElJypQFL0mZKnse/HXAzcAtxaKJEMK1wIkY4/lEYxsJZ8+eZXFxkYWFBQBOnTrVvOvqgQ0qE+3Zzs3N4QVu+se5O/zKHoO/H3iq5fazxc+vAs/3c0Cj5tixY+zdu/fS7X379jV//Wfg7UGMKRft2e7YsWOAo8mPc3f4lSr4GOPTwNNJRzKipqammJqaunR7fn6eyclJgFcHNqhMtGcLl+WrNXLuDj+PwUtSpix4ScqUBS9JmbLgJSlTFrwkZcqCl6RMWfCSlCkLXpIyZcFLUqYseEnKlAUvSZmy4CUpUxa8JGXKgpekTFnwkpQpC16SMmXBS1KmLHhJypQFL0mZsuAlKVMWvCRlyoKXpExZ8JKUKQtekjJlwUtSpix4ScqUBS9JmbLgJSlTFrwkZcqCl6RMWfCSlCkLXpIyZcFLUqYseEnKlAUvSZmy4CUpU1eWXTGE8BCwC/g88Arw7RjjO6kGNkoOHjzIoUOHOHPmDBMTE4MeTnbMNx2zHW6lnsGHEL4JPAY8DNwNfAD8NoTw2YRjGwlHjx5lZmaG3bt3c+TIETZu3Ni86zODHFcuzDcdsx1+ZQ/R7ASeiDE+E2P8E/AAMA5sTTayEXH48GGmp6fZunUrIQT27NnTvOtrgxxXLsw3HbMdfqseogkhXAXcAXy/uSzG+GEI4TXgXuBXFfe5AWBpaaniZvm5cOECx48fZ9u2bczPzwNw7ty55t1f7uEhzbZFn/M12xbO3fq1ZLOh7DZXXLx4sesKIYQvAAvAl2KMb7Ys/wXw9xjjA1223Q88WnYwuszvYoz3dbrTbNesY75mu2bO3bS2xBhfKrNi6TdZexFj3A/sb11WvCL4B7AZ+Cjl/teBG4DXgK8DbxfLNgAngL9129BsS+kpX7Mtxblbv2a+b5TdoEzBv08j8Bvblt8AvF56aIUY43IIgRjjXNVtcxNCWKSR7ccxxpMtywEWqz6e2V6un/ma7eWcu4NRZLRcdv1V32QtHuyPwGTLTq4B7gFe7WWQauiSLZjtmplvOma7PpQ9RHMAeDKE8AfgLRovrxaA3yQa1yhZKVsw234x33TMdsiVLfjzwDzwc+AK4H+B+2KMF1INbISslC1mu3YhhCngG8XNZ4ALwMtgvn3i3B1yZc+D3wj8N/Cfxe1/X+OnWH+whm1z86lsWVs+ZvuJjcCLwEPF7RBj/Bq9Z2S2l3Pu1q9SRqueJtkqhHA7cBy4tfWNFa2d2aZjtmmZ7/BKeprkSorToe6i8U67p0N94ovFz5tDCOPAG1XeLQez7aKZ7XgIYQNwExXzNduunLv1qDx3kxa8H2joyQvFzy1Axw8zmG1PXmz5vWO+Ztsz5249uubbqvZDNCGE24ATs7OzjI2N9fIQWTp9+jTbt29nZmaGXbt2AWyuek6w2a6sme3s7CwA09PTUDFfs+3MuVuPpaWlynO39kM0FC+/xsbGGB8fH8Duh9PycuMV16ZNm5qLenmZarYraGbbVhxV8zXbDpy7tSudrxf8kKRMlXoGH0K4DrgZuKVYNBFCuBY4EWM8n2hsI+Hs2bMsLi6ysLAAwKlTp5p3XT2wQWWiPdu5uTmqHJJUd87d4Vf2EM39wFMtt58tfn4VeL7szoqrQj206ooj5NixY+zdu/fS7X379jV//XMIoep7Hd/q49DWvfZsd+zY0Xr3OHCywsOZbZsuc3eST76AbFX2QmWl526pgo8xPg083fNw+NRVoQ6s5bFyMjU1xdTU1KXb8/PzTE5OdtliZUW+3+3j0Na99myht3zNdmVd5u6bHTdqYy+kVecx+J3AE8Cva9znKNkJHB70IDJltunYCwnVUvAtV4V6ro79jZqWfF8e9FhyY7bp2Avp1fUM/noan8L6a037GzXNfN8b9EAyZLbp2AuJeZqkJGWqroLvdFUo9Ucz302rrajKzDYdeyGxWgp+pau/qH9a8v3KoMeSG7NNx15Ir86vKjgAPAmcrnGf612VD5QdAH5cw5hysTmEcB6zTaFqtvZCNaXzre0YfIzxMPAIsG+1dXXJszTOKb5ztRWLfH+YfET5eAqzTaVqtvZCNaXzrfXLxmKMj4cQfgn8pc79rlO9fGPnT/A/SllV8zXb8iplay9UVjpfz6KRpExZ8JKUKQtekjJlwUtSpix4ScqUBS9JmbLgJSlTFrwkZcqCl6RMWfCSlCkLXpIyZcFLUqYseEnKlAUvSZmy4CUpUxa8JGXKgpekTFnwkpQpC16SMmXBS1KmLHhJypQFL0mZsuAlKVMWvCRlyoKXpExZ8JKUKQtekjJlwUtSpq4su2II4SFgF/B54BXg2zHGd1INbJQcPHiQQ4cOcebMGSYmJgY9nOyYbzpmO9xKPYMPIXwTeAx4GLgb+AD4bQjhswnHNhKOHj3KzMwMu3fv5siRI2zcuLF512cGOa5cmG86Zjv8yj6D3wk8EWN8BiCE8ADwLrAV+FXFfW4AWFpaqrhZnn76059y//33c8cddwDw4IMP8tJLLwH8K1D1FZLZtuljvmbbxrlbr5ZsNpTd5oqLFy92XSGEcBXwf8DWGOPvWpY/D7weY3y4y7b7gUfLDkaX+XmMcbrTnWa7Zh3zNds1c+6mtSXG+FKZFcs8g7+exl+Mv7Ytfxe4sduGMcb9wP7WZcUfjH8Am4GPygwyYzcArwFfB94ulm0ATgAfd9vQbEvpKV+zLcW5W79mvm+U3aD0m6z9EmNcDiEQY5yre9/DJoRwofh1McZ4smU5rPKfZCVme7l+5mu2l3PuDkaR0XLZ9cu8yfo+jb+o7c/Wb+DTz+pVTadswWz7wXzTMdt1YNWCL/5a/BGYbC4LIVwD3AO8mm5o+euSLZjtmplvOma7PpQ9RHMAeDKE8AfgLRrHzxaA3yQa1yhZKVsw234x33TMdsiVLfjzwDzwc+AK4H+B+2KMF7pu1dkPetwuRytl+19mu3YhhCngG8XNZ4ALwMv0nq/ZXs65W79KGa16miRACOEbwK3Ae8CPgFtb31hR78w2HbNNy3yHX6ln8DHGnwGEEG5PO5zRY7bpmG1a5jv8aj9Nsjjf9S5gEc93bfXF4ufNIYRx4I0qp0OB2XbRzHY8hLABuImK+ZptV87delSeu0kL3k+s9eSF4ucWoOOn1cy2Jy+2/N4xX7PtmXO3Hl3zbVXqGHxT8VLsOGs41hZCuA04MTs7y9jYWC8PkaXTp0+zfft2ZmZm2LVrF8Dmqh/6MNuVNbOdnZ0FYHp6Girma7adOXfrsbS0VHnu1n6IhuLl19jYGOPj4wPY/XBaXm684tq0aVNzUS8vU812Bc1s24qjar5m24Fzt3al8/WCH5KUqVLP4EMI1wE3A7cUiyZCCNcCJ2KM5xONbSScPXuWxcVFFhYWADh16lTzrqsHNqhMtGc7NzdHlUOS6s65O/zKHqK5H3iq5fazxc+vAs+X3VlxVaiHyq4/Co4dO8bevXsv3d63b1/z1z+HEKq+1/GtPg5t3WvPdseOHa13jwMnKzyc2bbpMncn+eQbJldlL1RWeu6WPQ/+aeDpnofDp64KdWAtj5WTqakppqamLt2en59ncnKyyxYrK/L9bh+Htu61Zwu95Wu2K+syd98s+xj2Qlp1HoPfCTwB/LrGfY6SncDhQQ8iU2abjr2QUC0FX3yI4Q7guTr2N2pa8n150GPJjdmmYy+kV9cz+E5XhVJ/NPN9b9ADyZDZpmMvJOZpkpKUqboKvtvVX7R2zXw3rbaiKjPbdOyFxGop+JWu/qL+acn3K4MeS27MNh17Ib06v6rgAPAkcLrGfa53VT5QdgD4cQ1jysXmEMJ5zDaFqtnaC9WUzre2Y/AxxsPAI8C+1dbVJc/SOKf4ztVWLPL9YfIR5eMpzDaVqtnaC9WUzrfWLxuLMT4eQvgl8Jc697tO9fKNnT/B/yhlVc3XbMurlK29UFnpfD2LRpIyZcFLUqYseEnKlAUvSZmy4CUpUxa8JGXKgpekTFnwkpQpC16SMmXBS1KmLHhJypQFL0mZsuAlKVMWvCRlyoKXpExZ8JKUKQtekjJlwUtSpix4ScqUBS9JmbLgJSlTFrwkZcqCl6RMWfCSlCkLXpIyZcFLUqYseEnK1JVlVwwhPATsAj4PvAJ8O8b4TqqBjZKDBw9y6NAhzpw5w8TExKCHkx3zTcdsh1upZ/AhhG8CjwEPA3cDHwC/DSF8NuHYRsLRo0eZmZlh9+7dHDlyhI0bNzbv+swgx5UL803HbIdf2UM0O4EnYozPxBj/BDwAjANbk41sRBw+fJjp6Wm2bt1KCIE9e/Y07/raIMeVC/NNx2yH36qHaEIIVwF3AN9vLosxfhhCeA24F/hVxX1uAFhaWqq4WX4uXLjA8ePH2bZtG/Pz8wCcO3euefeXe3hIs23R53zNtoVzt34t2Wwou80VFy9e7LpCCOELwALwpRjjmy3LfwH8Pcb4QJdt9wOPlh2MLvO7GON9ne402zXrmK/ZrplzN60tMcaXyqxY+k3WXsQY9wP7W5cVrwj+AWwGPkq5/3XgBuA14OvA28WyDcAJ4G/dNjTbUnrK12xLce7Wr5nvG2U3KFPw79MI/Ma25TcAr5ceWiHGuBxCIMY4V3Xb3IQQFmlk+3GM8WTLcoDFqo9ntpfrZ75meznn7mAUGS2XXX/VN1mLB/sjMNmyk2uAe4BXexmkGrpkC2a7ZuabjtmuD2UP0RwAngwh/AF4i8bLqwXgN4nGNUpWyhbMtl/MNx2zHXKlTpOMMR4GHgEeB34PXAfcF2O8kHBsI6FDtphtf5hvOmY7/Eo9gw8hTAH/BlwNXAX8R+txtx78YA3bZmWlbIEH1/CQZlsosv0OjdP2PgfcGmM8WZzF0QuzbeHcHYhKGa16miRACOEbwK3Ae8CPKP6j9DI6Xc5s0zHbtMx3+JV6Bh9j/BlACOH2tMMZPWabjtmmZb7DL+l58Cspzne9i8apVJ7v+okvFj9vDiGMA29UOR0KzLaLZrbjIYQNwE1UzNdsu3Lu1qPy3E1a8H5irScvFD+3AB0/rWa2PXmx5feO+Zptz5y79eiab6tSx+Cbipdix1nDsbYQwm3AidnZWcbGxnp5iCydPn2a7du3MzMzw65duwA2V/3Qh9murJnt7OwsANPT01AxX7PtzLlbj6Wlpcpzt/ZDNBQvv8bGxhgfHx/A7ofT8nLjFdemTZuai3p5mWq2K2hm21YcVfM12w6cu7Urna9XdJKkTJU9D/464GbglmLRRAjhWuBEjPF8orGNhLNnz7K4uMjCwgIAp06dat519cAGlYn2bOfm5qhySFLdOXeHX9lDNPcDT7Xcfrb4+VXg+bI7Ky7791DZ9UfBsWPH2Lt376Xb+/bta/765xBC1fc6vtXHoa177dnu2LGj9e5x4GSFhzPbNl3m7iSffMPkquyFykrP3bLnwT8NPN3zcPjUZf8OrOWxcjI1NcXU1NSl2/Pz80xOTnbZYmVFvt/t49DWvfZsobd8zXZlXebumx03amMvpFXnMfidwBPAr2vc5yjZCRwe9CAyZbbp2AsJ1VLwLZf9e66O/Y2alnxfHvRYcmO26dgL6dX1DP56Gp/C+mtN+xs1zXzfG/RAMmS26dgLiXmapCRlqq6C73TZP/VHM99Nq62oysw2HXshsVoKfqXLe6l/WvL9yqDHkhuzTcdeSK/Oryo4ADwJnK5xn+tdlQ+UHQB+XMOYcrE5hHAes02harb2QjWl863tGHzL5b32rbauLnmWxjnFd662YpHvD5OPKB9PYbapVM3WXqimdL61ftlYjPHxEMIvgb/Uud91qpdv7PwJ/kcpq2q+ZltepWzthcpK5+tZNJKUKQtekjJlwUtSpix4ScqUBS9JmbLgJSlTFrwkZcqCl6RMWfCSlCkLXpIyZcFLUqYseEnKlAUvSZmy4CUpUxa8JGXKgpekTFnwkpQpC16SMmXBS1KmLHhJypQFL0mZsuAlKVMWvCRlyoKXpExZ8JKUKQtekjJlwUtSpq4su2II4SFgF/B54BXg2zHGd1INbJQcPHiQQ4cOcebMGSYmJgY9nOyYbzpmO9xKPYMPIXwTeAx4GLgb+AD4bQjhswnHNhKOHj3KzMwMu3fv5siRI2zcuLF512cGOa5cmG86Zjv8yh6i2Qk8EWN8Jsb4J+ABYBzYmmxkI+Lw4cNMT0+zdetWQgjs2bOnedfXBjmuXJhvOmY7/FY9RBNCuAq4A/h+c1mM8cMQwmvAvcCvKu5zA8DS0lLFzfJz4cIFjh8/zrZt25ifnwfg3Llzzbu/3MNDmm2LPudrti2cu/VryWZD2W2uuHjxYtcVQghfABaAL8UY32xZ/gvg7zHGB7psux94tOxgdJnfxRjv63Sn2a5Zx3zNds2cu2ltiTG+VGbF0m+y9iLGuB/Y37qseEXwD2Az8FHK/a8DNwCvAV8H3i6WbQBOAH/rtqHZltJTvmZbinO3fs183yi7QZmCf59G4De2Lb8BeL300AoxxuUQAjHGuarb5iaEsEgj249jjCdblgMsVn08s71cP/M128s5dwejyGi57PqrvslaPNgfgcmWnVwD3AO82ssg1dAlWzDbNTPfdMx2fSh7iOYA8GQI4Q/AWzReXi0Av0k0rlGyUrZgtv1ivumY7ZArdZpkjPEw8AjwOPB74DrgvhjjhYRjGwkdssVs+8N80zHb4Vf6TdYY4+M0/iH74Qd9epwstGdbnGXQK7Nt08d8zbaNc7d2lTJa9TRJSdL65JeNSVKmLHhJypQFL0mZsuAlKVMWvCRlyoKXpExZ8JKUqaTfJtnOy/51F0KYAr5D4/u0Pwfc2vpFTiW2N98OzDYds01rLfnW9gzey/6VshF4Efhe1Q3Nd1Vmm47ZptVzvnU+g7902T+AEMIDwLs0LvtX9apQWYox/gwghHB7D5ubbxdmm47ZprWWfGt5Bt9y2b/nmstijB/SuGDAvXWMIWfmm47ZpmO26dV1iOZ6Glcj+Wvb8nf59IVEVJ35pmO26ZhtYp5FI0mZqqvgu132r/2vt6oz33TMNh2zTayWgveyf2mZbzpmm47ZplfnWTRe9m8VIYTrgJuBW4pFEyGEa4ETMcbzq2xuvl2YbTpmm9Za8q3tGLyX/SvlfuBN4H+K288Wt+9cbUPzXZXZpmO2afWcr1d0kqRMeRaNJGXKgpekTFnwkpQpC16SMmXBS1KmLHhJypQFL0mZsuAlKVP/Dx0s54hT4738AAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f8053549c18>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, axes = plt.subplots(nrows=4, ncols=4)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "from matplotlib import gridspec\n", "#sns.set(font_scale=1.3)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XmcVOWV//FPLyA2qM0iAmoUEz1RJHEhxiXbRKOiksUZMhmNG/ycYEbBiDFRdLrbcYmGOCrRaEyMkQRjjJgMuGV0kkxs4x4jjOFIFIjYLLKUgsjW3b8/bhVUd1d13dtdVbeq+vvmxYvqW3c53VSfeuq5z/Ocqvb2dkREpPiq4w5ARKSvUgIWEYmJErCISEyUgEVEYqIELCISEyVgEZGYKAGLiMRECVhEJCZKwCIiMVECFhGJSW3cARSbme0CfAxYAbTGHI6IVI4aYCTwvLtvCXNAn0vABMn3j3EHISIV65PAU2F27IsJeAXAz3/+c0aMGBF3LCJSIVauXMmZZ54JyRwTRl9MwK0AI0aMYJ999ok7FhGpPKG7NnUTTkQkJkrAIiIxKXoXhJmdDlwAHAkMBka7+9Ju9q8BrgPOAwYCjwNT3H114aMVESmcOFrAAwlGIcwIuf8MYDJwDsHdxeHArwoTmohI8RS9BezuswHM7MO59jWzauBCoNHdH01uOw94zcyOcPeXChqsFNzdd99Nc3Pzjq83btwIwKBBgwA47rjjmDRpUtZjCrF/dy677DLWrl2741ybN2/OuN+AAQMYNGgQ69evB2Dw4MGh9gfYsGEDu+22W+hrAAwdOpQbb7wx1PfQ3c8Ddv5Mon6v6XHk82ceNvZ8/d8XKvZMSn0UxAHAnsATqQ3uvtjMlgFHA90mYDNrBBoKGaDkV+qXPD0hxLl/Z2vXrmXNqlXUb9tGW00NVGf+ENm2YQPbEwm29etHdQ1s376ctrYasn3obGvbwPbtCRKJfkANm7ZsYVt9PTVtbVk/pm5oayOxfTv9EokefS/Q/c9j7dq1rFmzivr6bRFij3aN3ijG/32hYk+piqsoZ7IF/Fe66QM2s2OBZmCIu69P2/4c8Ki7R06uZrY/sOTJJ5/UMLQSNHnyZAB+/OMfl8T+mY7fvnw5Ta+9Fmr/aWPGUD90G01N4fZvaDiIRGIAm+vrea2pKdQxBzU0sE9tbY++p+5+HpMnT2b79uWRYq+t3afLuXr7M8+mGP/3UY5Zvnw5xx9/POS4r5VOoyBERGJS6l0QqZEOewHr07YPB1YVPxyJS3p/ZLo1a9YAO1sq6aL0i4rEodQT8BvA28DxwCIAM/sQsB/wTIxxSZGl90em69+/Bgj6WNNl64+Uwnn33Vra2tZ0eTPUm2R2cYwDHgJ8ANg/uekQM6sH/ubuG81sEXC5uz/k7m1m9n2g0cxeJ2j13gL8USMg+p76+mh9qVJcbW1VtALLt2/vsL2mf3/IsL03Nw8rRRwt4M8DP0n7+uHkv/8A/B4wYI+0568FBgGzgTrgt8CUgkeZB88++yxTpkzhz3/+c9yhSBlpa2ujXyLBQQ3h7jH3SyTYOGBAgaMKZ1vEm4eFUE7dVXGMA74HuKeb56s6fd0KXJb82+ds27aNfv0q6+N0tl8QyP5LsmbNGurrCx5a3rURdIeEbZGr66T3yqm7qtT7gMvGPffcw09/+lMSiQR77LEHZ599NjfffDNbtmzh8MMPB+C2227j2GOPpbm5me9973ssW7aMUaNGMW3aNE444QQAZs2axV/+8hf23XdfHnnkEU4++WReeeUVzjjjDCZOnLjjelOnTmW//fZj+vTpsXy/vZE+lraz/jXJX5LlHX9J2irsTSiXqC3JQbX6VU5XLt1V+l/LgyVLlvCf//mfzJ07lw9+8IOsW7eOFStWcNddd3Xpgli2bBlTpkzhhhtu4MQTT6S5uZkLL7yQX/7ylxx88MEAPP300zQ1NTFjxgy2bdvG3LlzmTt37o4EvH79en73u98xb968WL7ffKjfti30WFoIxtOWo2qiJ4NEojS6E6TwNA44D2pra2lvb2fx4sW8//77DBkyhDFZEsYjjzzCuHHjOOWUU6itreXTn/40n/3sZ/n1r3+9Y58DDjiAiRMnUltby6677sqECRN49dVXWbp0KQDz5s1j7Nix7L///kX47kSkUNQCzoN9992XG2+8kTlz5nDFFVcwduzYrF0DK1euZO+99+5y/Jtvvrnj65EjR3Z4fvfdd+fEE09k7ty5XHLJJcydO5ezzjor/99IBdGQqMoR9aZaT+4XrF+/PuNrotCvFyXgPDn55JM5+eST2bJlC3fddRdTp07lu9/9bpf9RowYwXPPPddh21tvvdWhPFJ1hvUFJk6cyKWXXspJJ53EsmXLGD9+fP6/iQqiIVEd9WRkQKnc+Mx2zyCf9wtaW1tZtWYN2zp9w4V+vSgB58Ebb7xBS0sL48aNo3///gwcOJDq6mqGDh3K+++/z9tvv82ee+4JwCmnnMLtt9/O448/zgknnEBzczNPPvkkv/jFL7q9xlFHHcWuu+7KjBkzGD9+PHV1dcX41spaKQyJKhVRkxhET2RtbRRs+FyUewY9vV8Qx+tFCTgPtm3bxqxZs1i8eDFVVVUceOCB3HTTTRxwwAF8+ctf5rTTTqO1tZVZs2ZxzDHHcNttt3HTTTdx+eWXs/feezNz5kwOOeSQnNf5x3/8R773ve9x1VVXFeG7kkw2btzI5n79aDgo3J3zNmDTpprCBhVSud74LOefeS5KwHlgZtx///0Zn7v66qu5+uqrO2z71Kc+xac+9amM+1900UVZr7PPPvswevRojjzyyJ4HKxJS1DHMAG39+2v4XAR9+7svI++//z733nsvZ5xxRtyh9GmDBg1iQCIR6eNwXV3oIrmSQSX/zJWAy8C8efO46qqr+NjHPsZXvvKVuMORPiLqGOZp08awVfcmIlECLgMTJkxgwoQJcYchUrHiWn9DCVgqUiHvyIvkixKwiFSUni6AFMf6G0rAUpGqq4lcV62U7shnar3XbNoEQGunftZ+iQQMG1a02CR/SucVJ9KNqK2atradCavc1NTUMGzw4C7b12zdCsDI3Xfv+MSwYQwdOrQYoZWFcloASQlYpMQMHjw4a5ViyH91YYmPErCUBQ2JKg/qOolGCVhE8qK6uh3aYK9OfenqOslOCTiES772NdavW1eUaw0eMoSb7ryzKNcSyafdd99Obe2ILl0k6jrJTgk4hPXr1tHwwgtFuVbTuHFFuY5IOUlkWIxnU3Ilt7rWjtOO24oWVe8pAZe5uXPnMnv2bJYuXcpuu+3GZz/7Wb75zW8ycODAuEOTPLj77rtpbm4Guq7de9xxxzFp0qTYYiuWbN0UW5M/j907FTCoXrMG6FpvsBTFkoDNbDpwMTAMeBqY4u6Ls+y7N3ATQdn6XYG/AN9296eKFG5Ja21tZfr06ey33360tLTQ1NTEzTffzIwZM+IOTfJsQB+dqZet6kS2ro3Jkyd3qXxcqoqegM3sbOAaYBKwEGgCHjGzMe6+NcMh9wL9gZOBDcClwMNm9gF3f6dIYZes9ErJ++67L1OnTuXaa69VAq4QkyZN6hOt3HzLNGY8tUZw55XS+lpZ+qnAbe5+H4CZnQOsBk4D5mbY/2jgHHd/Kbn/lcC/AgcCxemYLWGvvPIKs2bN4rXXXuPdd9+ltbWVrVu3sn37dmpLaGaXxCvqouZQXgubp8vaZbE12WWxe8cui2HDgppwcSjqb6iZ7QIcBlyZ2ubuG8zsWYJEmykB/wn4ipn9FtgE/D9gOfBqiOs1AhVba+a9997j/PPP5/jjj+eCCy5g8ODBvPjii8yYMYPW1lYlYOmTonZZpJ57r1Pdt2Io9m/oUKAGWNVp+2pgryzHfBl4EHgHaE0ee7K755xn6u6NQGP6NjPbH1gSIeaS9cYbb5BIJLj00ksZMmQIAI899ljMUUkpirqoOZTXwublqmv53dJzLUGcnwaOAuYB88ys62T5PmbUqFH069ePn/3sZ7z55pvMnz8/Z3FPESkdxW4BryVoxXZu7Q4Hnuu8s5l9CJgCfNDd30huuwBYBnwF+EFBo00aPGRI0cbnDk62ZMMYOnQo11xzDbfccgs/+tGPOOKII7j44ov59re/XcAIRSRfipqA3X2Lmb0MHA88BmBmg4CPA7dmOGTX5L87Pge5e7uZtVHE1nspz0z74he/yBe/+MUO2770pS/FFI2IRBHHXZpbgTvM7EWCYWiNwFvAfAAzWwRc7u4PAYuAN4A7zexy4D3gawQt6N8WP3QRkfwpegJ293vNbDgwk50TMcanjQE2YI/kvtvM7BTgRoKEO4AgaX8+28QNKX3lPiQq6rTYqGNS+/gCYd2qtJmBsYxTcveZBAk403NVnb524AvFiEskl6jTYvslx5fW1na87dHdmNRSWiGslN888j0zMI6lNDVQVIqunIdE9WSMaT72j0N1eztt1JbUm0ehZgZmi7vQS2kqAYtIRrtv307tiL6xvGS+3lijUgKWiqXqDFLqlIClbETpj2xrg5pqVWeQ0qYELGUhan/k8OFBv17nj5aV+PFZypcSsJSFvtQfKX1HOawFId0466yzmDkz44g+ESlxagGHcMklX2P9+iIV5Rw8hJtuKt2pzyKSPzkTsJn1j3LCLFUtytr69etoaChSUc4mFeUU6SvCtIA3A+0Rzlka80X7kK1bt3LFFVfw6KOPMnDgQC666CL++Z//Oe6wupVpOi9kn9Kb6NcPDRIrH5U2ZbhQwiTgSURLwFJkDzzwAOeeey4PPvggTz31FE1NTRx00EEcfvjhcYeWUXfDvbJN6R2W4zgpXX21mGgYOROwu99ThDikF0aPHs20adMAOOCAA3juuef42c9+VtAEvGDBAgDGjh0b+dhss46gskc19KVWoYqJhqNREBXgIx/5SIevP/rRj/L6668X9Jpz5sxhzpw5Bb1GJRswYIBahr20YMGCHQ2BchV5FISZfRmYTFCVuMsryN1H5SEuiaCqqir3Tnm0YMECFi5cuONxT1rBfZFahfmVagBcf/31MUfSc5ESsJl9FfgRcA/wOeBuglb0acAG4Kd5jk9CeOWVV7p8fcABBxTseukt3zlz5pT1L0BfEmUd49T+pXrjs5CNgGJ2FUVtAV8KXA3cAPwrcLu7v2RmA4HHgS15i0xCe+ONN5g1axannXYazc3NPPnkk8yePTvusKSERF3HGDre+Cy1/utiNQIK3U0UNQF/CGh291Yz287OyhXvmdmNwPcJknNFGTx4SNHG5w4eHL4oZ8rEiRN56623OP300xk4cCBXXXUVRx55ZAGiC5xxxhlcccUVOx5L6cvncouV3nddzK6iqAk4wc5CmcuBjwC/S349kGRCrjSlPDMtvaX7ne98pyjXHDt2LIceeuiOx1L5Sq3/ulIaAVET8NPAOIKKxvcDTWY2GNgGXAT8Pq/RSckq5xe9lL9KaQRETcCNwN7Jx1cDuwPnE7SKnwQuzFtkUtLK+UUvlaESGgGRErC7vwq8mnz8PvBvyb8iIkVVCY2AWFZDM7PpwMXsLEs/pbsy82Y2lqA0/ScJpkX/Gficu2vUhYiUrajjgP8n1z7u/tkc5zgbuIZgjYmFQBPwiJmNybSSmpkdCPwB+AHwLYLFgT4KtEWJXUT6nlIbPtdZ1BbwqgzbBgNHEUzEaA5xjqnAbe5+H4CZnQOsJpjMMTfD/tcC89x9Rtq28PXMRUQozeFzUfuA/yXTdjPbA5hHMBkjKzPbBTgMuDLtnBvM7FngaDolYDOrAU4BbjCzJwiGvS0CrnD3p3LFa2aNQEOu/USkMpXa8LnO8rIYj7u/A8wkd7IbSrBecOeW9Gpgr667syfB+OJvAb8BTgKeBf7bzEaHiKvR3avS/wI5jxMRKYZ83oQbCESfxtW91BvEr919VvLxn83sROAcgmFxIiJlKepNuBMzbO4PHAxMJ/dEjLVAK11bu8OB5zLsvya5/6JO2/8KfCDHtfLma5dcwrr164tyrSGDB3PnTTcV5VoiEq+oLeDHCIaBdV7/cBtBF0G3EzHcfYuZvQwcnzwXZjYI+Dhwa4b9t5rZiwRLX6Y7KHm9oli3fj0vNBSnK3lcU1NRriMi8YuagDP1n24GVrt72LJFtwJ3JBPrQoJuhLeA+QBmtgi43N0fSu5/EzDbzH4HPAWcCRha+lJEylzUURDLentBd7/XzIYT3LRLTcQYnzYG2Ehb1Mfd7zezoQSJek/gFeBEd1/a21gqQWtrK7fffjtz587l7bffZu+992bq1KmceuqpcYcmAvSufFUc5y2mMGXpM/X7ZuXuvw2xz0yCBJzpuS7lHdz9duD2KHH0FbNmzeKBBx7gyiuvZMyYMfz9739n8+bNcYclJay7yQmQ/wkKhapc0VcqYnTu9011NaQnyvTuB5WlL5LNmzdz9913c/311zN+/HgAPvCBot2blApQ6MkJhapcUSllscIk4PR+3/2Ae4EHgF8DbxN0C3wJ+Cfg7HwHKNktW7aMLVu2cNRRR8UdipSRYk5OKFTlikopixWmLP2Ofl8z+yFwp7unf7evAc1mtg74d+CEvEcpIlKBos6E+wTwYpbnXgCO6V04EsV+++1H//79ee65TEOoReJ39NFHZ3zcW+lrAZfzusBRh6G1EHQzZLrRdi6worcBSXgDBgxg0qRJXHfddVRXV3PooYeyfPly3nvvPU44oTw+iKTfEILSXLFKeu6ZZ57p8PgLX/hCXs7bVytiXAHMMbNDgf8iWMNhOPB54FAg42I95W7I4MFFmyAxZPDgSPtfdNFFAFx33XWsX7+evffem2nTphUitKIoxRWrpDSVc8s3Jeo44AfM7HXg28BZwAhgJfA8MNnds3VPlLVSnhpcW1vLN77xDb7xjW/EHUqPFOOGUKmvCVvJClk8s5xbvimRF+Nx95eALxcgFpGCUwu7uCqlq6BQYilJJFJMpb4mbKWrhK6CQgkzE+5pgu6Fv5rZn+g46aILdz82X8GJSPlTyze7MC1gJ1hwJ/U47KI7IgWhPl2pFGEmYpyX9vjcgkYjEpH6dKWcRV2QfSrwS3dfWaB4RHJSn65Uiqgz4f4DWG5mfzCzC5LLSoqISA9ETcDDgYkEC6jfALxlZk+a2fnJNXtFRCrGggULdqw7XAiRErC7b3H3h9z9DIJk/BWCum03ASvM7LECxCgiEos5c+Z0WHkt33pclt7dN7v7gwQlgiYTLE35uXwFJiISp9SawwsXLixYK7hHCdjMaszsZDO7G1gFzAFeB6bmMzgRkbh0XnO4EKKOgvgcwTTkLwJDgWcJbsw94O5v5T88EZHKFbUF/DhwOHAjMNrdj3H3m5V8RaTSFGPN4ahrQRzo7q8XJBKRMqMZeZWtGAsJRV2OMi/J18ymAxezsyz9FHdfHOK43xCsPTze3TXiQkqGZuRVpkIvJBRmMZ4W4BR3f9nMVpB7MZ5ROc53NnANMAlYCDQBj5jZGHff2s1x5wP9c8UrUiyakVf5Cr2QUJgW8J0ElS9Sj3u7GM9U4DZ3vw/AzM5Jnv80YG6mA8zsQ8BVwNEEk0BERMpemMV4mtIeN/bmYma2C3AYcGXaOTeY2bMEybVLAjazWuBnwOXu3mJmUa7XCDT0JmYRkUIp9oLsQ4EagrHD6VYDe2U5Zgaw3N1/HvViyTeMxvRtZrY/sCTquURE8i1MH3DORdjT5XNBdjMbB5xP0GoWEakoYcYBLyJYiD31d1+ChPgesDT572HJ7YtynGst0ErX1u5wuraKAT4BjAJWmtl2M9ue3P6wmT0YInYRkZIVaUH25HrABwOHufvatO3DgPnAX3Kca4uZvQwcDzyWPHYQ8HHg1gyHzAae6LRtAfB14NFcsYuIlLKofcCXAl9PT74A7r7GzK4DbgduyXGOW4E7zOxFgmFojQQjG+YDmNkightuDyWv0+FayZtwy9z97xFjFxEpKVGnIg8huJGW7bn6XCdw93uBfwdmAi8kjxufNgbYgD0ixiUiUnaitoDnA981s3eA+e6+PTlMbALw3eTzObn7TIIEnOm5qhzHdvu8iEi5iJqApwA/IRiv25pMxHsQDC2bl3xeRERCiLoWRAL4kpkdAhxFMJphJfC8u79agPhERCpWjyZiJJOtEq6ISC9ETsDJPt+jgH2ALktAJW+yiYhIDlErYnwMeBDYG8h0M6wdUAIWEQkh6jC02wlmrB1LcPNt105/6/IanYhIBYvaBXEIcLq7P1uIYCQeqYqvhV77VEQ6itoC/j+yr1omZWrOnDkFq/paahYsWFCwEuMiUUVNwF8HppvZcYUIRopvwYIFLFy4kIULF/aJxNSX3myk9EXtgpgHDAL+18w2A+903iFXSSIpLenJaM6cOVx//fVZ900vQrlx40YABg0aBJRHEcrUm03qsbpcJG5RE3A+ShJJBdi8eTOwMwGXgyhvNiLFEHUmXGOB4pCYnHHGGVxxxRU7HncnvQhlqvz6j3/848IGKFLBwlTEeBqY7O5/TT7uTru7q3+4jIwdO5ZDDz10x+NKFuXNRqQYwrSAHdicfPwa6oKoOH0lGfWlNxspD5EqYrj7uQWNpsT0lfGxlf79pesrbzZSHopdFbms/PCHPwRg1qxZMUeSW7mPUCiWvvRmI6Uv6jjgPmPBggUsXbqUpUuXlt342M2bN+8YpSAipUst4CxSrd/U43y1ggvVUo06QkEtZpH4qQWcxerVqzM+zqdSaamWShwifY1awFnstddeLFmyZMfjfCmVsbSlEodIXxZLAjaz6cDFwDDgaWCKuy/OsF8/4FrgVGA0QYn6h4AZ7r6hkDGef/75O8aMnn/++aGOqcRRE5dddhlr167tsn3NmjXAzuSdbujQodx4440Fj02k3BU9AZvZ2cA1wCRgIdAEPGJmY9JK06fUAR8hKGP/CsFC8D8kSNwFHU80duxYRo8eveNxGKmprpU0xXXt2rWsWrOGbfX1HbbX9O8PwPLt2zts75dIFC02kXIXRwt4KnCbu98HYGbnAKuB0wiqLe/g7u8AJ6dtWmxmM4B7zKzK3Qs6KSRsyxcqe6GXbfX1vNbUFGrfgxoaChyNSOUoagI2s12Aw4ArU9vcfYOZPQscTacEnMUewPpCJ1+I1pUQx0Iv6h4QKW/FbgEPBWoIyhqlW02Ihd7NbAhB8v5hrn2T+zcCFdskW7t2LWtWraJ+27YO2/vX1ACwffnyDtsT/foVLTYRya1sRkGY2a7Ar4FFwHVhjkmu3tbY6Tz7A0vyG118C73Ub9tG02uvhdq34aCDChyNiERR7AS8Fmila2t3OPBctoPMbADwG4JKzKe7+/Zs+8ZFC72ISFRFTcDuvsXMXgaOBx4DMLNBwMeBWzMdk+w3nkvQ9/s5d99UpHAj00IvIhJFHF0QtwJ3mNmLBMPQGoG3gPkAZrYIuNzdH0qOA/4VcBAwAagzs7rked5299ZiB98dtXxFJIqiJ2B3v9fMhgMz2TkRY3zaGGAjaO1CMO73tOTjVzudajSwtLDRiogUTiw34dx9JkECzvRcVdrjpQT9viIiFUeL8eTRggULym7pShGJjxJwHs2ZM6fDhAwRke4oAedJairywoUL1QoWkVCUgPOk81RkEZFclIBFRGJSNlORS1WqtM/WrTtX0ly+fDmTJ0/eUdpHi+aISCZKwHnSP7k+bufHUN5r6m7cuJF+mzeHXmayXyLBxgEDChyVSGVQAu4karHK9NI+Z511FpC5tE8prKn7bm0tbWvWdGlxd9cSV624ylaJVVzKiRJwN1LJJ5WAc+nc8i20jRs3srlfv9CrnG2vqoK2VrZv77hMZf/+yeUrO21PJPoBNZHfPAbV6mVVLiqxiks50W9KJ5VerHLAgDaamkIuX9lwEIlETYEjkrhUchWXctHnE3C2G2RQ+jfJBg0axIBEIvR6wNPGjKGurqTWL5IYxVHFRTrq8wk4W1UJUGUJESmsPp+AIVpVCVBlCakMcVVxkZ2UgEXKRL5HLKiKS/yUgEXKRCFGLKjlG68+n4CjDuWCoA94QHKMsEgxFGrEglq+8erzCbgn2oBNmzaFntCwZs0a6DQLTiQKjVioTH0+AUcdygXBcC6q20NPaGhr60e/RELTeUWkgz6fgHuqvn5b6AkNF100psDRSKXTiIXKpARcBNXVsFnTeaUXNGKhMum3XKRMqOVbeWJJwGY2HbiYnWXpp7j74iz71gDXAecBA4HHk/uvLlK4FaONYIGdhoZwIz4SiX60tbUVNigJTS3fylP0ihhmdjZwDXAZcBTwDvCImWVbSmwGMBk4B/gkMBz4VRFCFREpqDhawFOB29z9PgAzOwdYDZwGzE3f0cyqgQuBRnd/NLntPOA1MzvC3V8qauRlrppoNw+D1dA0GkOkUIqagM1sF+Aw4MrUNnffYGbPAkfTKQEDBwB7Ak+k7b/YzJYl989LAk6kTcTYVFPD1urMHwz6t7VR19pKG7BuXT+mTRtDrk/o1dXQ1gb91q3joIYGajZtojqtfFG6tv79aa2rCypiDBsWKfawcae6IDZtqmHr1iz792+jrq41uR4wO4bQ5Tt2kb6u2C3goUANsKrT9tXAXhn2H578N+z+HZhZI9Dt4NuhQ4d2+Lp640bIUgWieuBAagcNonrNmmTfaDVVVe20t7dn3L+qqgqoAtqoqa5mr9paNlZXk63GxMDq6mD0w7BhXeLKFXuYuPutXw9Abe1eVFdvhCyRVFcPpLZ2EMOGwYYNG9htt90A8hq7iFT4KAh3bwQa07eZ2f7AktTXca/p2xvlHLuIFP8m3Fqgla6t1+F0beVC0NIlwv4iImWjqAnY3bcALwPHp7aZ2SDg48AzGQ55A3i70/4fAvbLsr+ISNmIowviVuAOM3sRWEjQRfAWMB/AzBYBl7v7Q+7eZmbfBxrN7HWCVu8twB81AkJEyl3RE7C732tmw4GZ7JyIMd7dU7fXDdgj7ZBrgUHAbKAO+C0wpXgRi4gURiw34dx9JkECzvRcVaevWwkmbVxWhNBERIqmokdBZFEDsHLlyrjjEJEKkpZTasIe0xcT8EiAM888M+44RKQyjQReD7NjX0zAzxOsKbGCYEhfQiwUAAAWaklEQVSciEg+1BAk3+fDHlCVbRaXiIgUVtFXQxMRkYASsIhITJSARURiogQsIhITJWARkZgoAYuIxEQJWEQkJkrAIiIxUQIWEYmJErCISEyUgEVEYqIELCISEyVgEZGYKAGLiMRECVhEJCZKwCIiMVECFhGJiRKwiEhMlIBFRGLS54pymtkuwMdQUU4Rya8dRTndfUuYA4qegM3sdOAC4EhgMDDa3Zd2s38NcB1wHjAQeByY4u6rexjCx4A/9vBYEZFcPgk8FWbHOFrAAwkS4Fzg9hD7zwAmA2cBq4BbgV8Bn+rh9VcA/PznP2fEiBE9PIWISEcrV67kzDPPhGSOCaPoCdjdZwOY2Ydz7Wtm1cCFQKO7P5rcdh7wmpkd4e4v9SCEVoARI0awzz779OBwEZFuhe7aLPU+4AOAPYEnUhvcfbGZLQOOBnqSgKXMNDU1MW/evIzPJRIJAOrr6zM+P2HCBBoaGgoW24QJE1ixInODJ5FIsGnTph6dt66uLuv3NHLkyKw/j3wp5Z95d8ot7lJPwMOT/67qtH01sFeug82sEYjnlSBFkUpw2X6pCm3FihW0/L2FUW2juj5ZlfzbE+8Aia6bW6pbenjCrnr65tHaGjTwsj0/e/bsrEmwGG8e2cT9Wsmk1BNwr7h7I9CYvs3M9geWxBCO9FBDQ0PWlsm4ceMAeOGFF4oZUgej2kbxwtriXH/c0HF5O1d3bx71yT+ZJKqSLcnWLIlsKwV/88im1F8rnZV6Ak6NdNgLWJ+2fThdW8VSxrprjXWnpSX4pU79ckURZ2usVJTrm0elKPUE/AbwNnA8sAjAzD4E7Ac8E2NckmfdfpTvRl1VXfBgabTr5as1lkgk2FS9qWjJpaW6hbpEXVGuJYUXOQGb2RBgDLAv8Ki7rzezAcBWd28LefwHgP2Tmw4xs3rgb+6+0cwWAZe7+0Pu3mZm3wcazex1glbvLcAfezgCQkqYWmPS14ROwGZWC9xAMIliANBOMKlhPcG43BcJd8Pr88BP0r5+OPnvPwC/BwzYI+35a4FBwGygDvgtMCVs3CKFVF9fT32ivrhvHKVzDykWldRdFaUFfANwLnA+8Afg72nP/Qb4OiESsLvfA9zTzfNVnb5uBS5L/hWRPq5cu6syibIYz1eBy9z953Sd6fE6wZhdEZGCSo3njaq+vZ769p59fOjpNXOJkoB3A97M8pzuCoiIRBSlC+LPwBkEfbCdfQl4Ni8RiYh0o5L63aMk4KuAx8xsOMFNt3bgRDP7N4Luic/kPzwRKRQNoYtf6ATs7v9jZicC1wA/JJhkeS1By/cEd/9TYUKUvkDJQPqiSOOA3f33wCfMbFeCtXwT7t6z1UZEJFaV9FG+XEUZB3w38B/uvsTd3wfeT3tuP6DB3ScVIEbpA5QMpC+KMgriXIKlITMZBpzT62hERPqQqEU527NsP5RgzQYREQmp2y4IM5sGTEt+2Q782sw6F5sbQLBa2d35D0+k9LVUt0S+ebhjSceIEwNaqlsYRbQZYFK6cvUBLwTuJxjxcBlBZYrO8/K2EqxU9mDeoxMpcSNHjuzRcZtakouDj4qWgEcxqsfXrCSV8qbXbQJ29yeBJwHM7H3gLncv/KrKImWipwu0lOLi4OWikt70oowDbipIBCIiEVTSm16kccBmdjRwHnAgQd9vB+5+bJ7iEpEiqJSP8uUqyjjgk4D5BF0SnwYeA3YFjgXeIliiUkTKRCV9lC9XUVrAVwM3A98GtgFXuftLZrYvQTL+3wLEJyIFUkkf5ctVlAR8MHA50Jb8OwjA3d9Mln+/jm4WWpfS1dzcDMBxxx0Xaxz6OCx9TZQEvAmocfd2M2shKB2UavVuBfTZokzNnDkTiDcB6+Ow9EVREvALwFjgvwnquDWY2TaC7oh/B57Pf3hSaM3NzTz99NM7HseVhPVxWPqiKFORrwdWJh/PAP4C/IigWOa7wL/mNzQphlTrt/NjESm8KOOAm4Hm5ON1wKnJcvS7uPs7BYpPRKRiRV2MpwN336zkW94uvfTSjI9FpPCijAOe083TbQTdEC8Dv3T3wpQQlbw77rjjOPbYY3c8FpHiiXITbiTByIcRBGXo3yZYH/iDBH3DKwjWBL7azE5w94V5jlUKRC1fqRRNTU1Zb+i2tATL2KRu3HY2YcIEGhoaChZbJlES8O1AI0H9t1dTG81sDPBL4HsEs+QeB24ETslfmFJIavlKX1BXV3o1AKMk4GuAy9OTL4C7/5+ZNQA3uPscM7sBuDOfQYqIhNHQ0FD0VmxvRLkJty/BusDZpEa1twA1PY5IRKQAmpubd8z6LBVRWsDNwPVm5un9u2Y2lmCM8FPJTR8CluUvRBGR3iuFGZ+dRUnA5wPzgL+Y2XJ23oTbB/g/dk7E6E/QHywiUhJKZcZnZ1EmYiwFxprZacA4gjpwq4Dn3f3htP1+kOtcZjYduJigmvLTwBR3X5xl33voWnH5Nne/MGzsInEotzvylazzjM+yS8Ap7j6fYF3gHjGzswlu6E0iqDnXBDxiZmPcfWuWw34DTEn7+r2eXl+kFJTiHfl0evMojqgVMQYQJM4jCboeLnT3xWb2z8Ar7v7XEKeZStCCvS95znOA1cBpwNwsx2x295VZnhMpSeV2Rz6sUn/zyOTSSy/l9NNP3/G4VESZCfdhgpXQ6ghWPjsB2C359HHAqcDZOc6xC3AYcGVqm7tvMLNngaPJnoBPMrO3CRL1fKDJ3TeFjV1Eoqm0N49SnfEZpQX8fWAx8HlgM8EawCn/C3w3xDmGEgxRW9Vp+2qCPuVMHgV+RTCyYgzBJI8DgIm5LpZcKL5yXkV9lD4OSz6UUss3JUoCPhb4R3ffaGadx/muJpiinHfufn/alwvMbCXwOzPbx92X5zi2kWD23g5mtj+wJM9hSkzK8eOwSEqUBLwR2CPLc/sDa0OcYy3QStfW7nDguZBxpBZ+Hw10m4ClMlTax2EonTJQfUkpjgOOMhPuYaAxWYQzpd3M6oHpwK9zncDdtxCsmHZ8apuZDQI+DjwTMo6PJP9dGnJ/kZIzc+ZMLYBfRKlxwE8//XRJzYaL0gL+JvA7wNnZCv0+cCBBS3RGyPPcCtxhZi8SDENrJChrPx/AzBYRrDnxUDI5X0Vwc24VQR/wzcB/ufubEWIXKRmlOimgkpXqOODQLWB3X0MwAWMaQcJ8AniTYETDMWEXZnf3ewlqyM0kqDM3BBifNgbY2NnV0QocTpCcHbiFYEzwWWHjFik1KgMlKaFawGbWn2Cc7p/d/S7grt5c1N1nEiTgTM9VpT1+HzixN9cSESnVccChWsDJ1ukcYL/ChiNS+VQGqvhS44CPPfbYkul+gGh9wAsJxt/+vjChiPQNpTopoNKV4ptdlAT8DeBuM2sBHnf39gLFJFLxSjEZVLpSfLOLkoB/STD1+GGg1czWAh2SsLuPymNsIhWrFJOBFF+UBHwnnRKuiIj0XJT1gBsLGIeISJ8TZSacSMkpxTpfImFFWY7yT2TvgmgD3gX+AvzY3f+Wh9hEcirF+f0iYUVpAS8iWIT9owQVKZYm/z0M+ADwPsEMtVfM7BP5DVOkq1Kd3y8SVpSbcC8STBM+zN3XpTaa2VCCYp1PAWcSrN97PfDJPMYpvdTdmrqJRAKA+vr6jM+X6pq6pTq/XySsKC3gy4Dr0pMvgLuvBb4DTHf3zcAs4Ij8hSiFtmnTJjZtUoERkWKL0gIeCgzO8txgINV8Wk/QJywlpLs1dVPVJF544YVihtRrpTq/XySsKAn4UeC7ZrYeeNTdW5OVMU4hKBP0aHK/McDr+Q1TpCtN6ZVyFyUB/yswG/gvgplw7xAsG1kDPAJ8Lbnf26QV3aw0ldiXWs7U8pVyFmUixjrgVDM7lGBd4L0IFkl/wd0Xpu13f5ZTVLxUP2q2BCz5p5avlLMoLWAAksl2Yc4dK1Ql9qWKSDyiTMTobmH01ESMv7r7hl5HJSLSB0RpAT/GzplwVWnb07dtNbPZwL+llRiSIpkwYQIrVqyIfFxLSwuwswUfxciRI7P2iYtI96Ik4E8DPwUeILgR9zawJ/AFYCJBrbj9gWuBdwDdHSmyFStW0PL3Fka1RVsVtK6qLniwNNr1Wqpboh0gIh1EScAzgDvd/Ya0ba8BzWa2Dpjq7ieY2UDg31ACjsWotlG8sLY4fdDjhkZvMYvITlFmwn0SeCnLcy8BxyQfP0PQMhYRkW5EScArCdZ6yOSryechGBu8tjdBiYj0BVG6IK4CZifHAT/Mzj7gU4HD2ZmcTwL+lM8gRaR0pFae0xjs3osyEWOOmb0OfBM4h50TMZ4Hvu7uzyX3u6AQgYpIadAazPkTaSKGuz8L/FOBYikZGs4lkllqDebUYyXh3omUgM3saOA84EBgQOfn3f3YPMUVKw3nkkIr14/xWoM5v6LMhDsJmA88CXyGYPWzXYFjgbeAPxQgvtiU43CuRCLBpupNRRse1lLdQl2irijXqjT6GC8QbRTE1cDNBDfdAK5y988StIY3A/+b59hEKlI5l1JKX31OK9H1XpQuiIOBywnWfWgDBgG4+5tm1ghcB9yT5/gkgvr6euoT9cVtuWvht8jK+WO81mDOrygJeBNQ4+7tZtZCUB8u1erdCowMeyIzmw5cDAwDngamuPviLPvWECT384CBwOPJ/VdHiF1E8kQt3/yJ0gXxAjA2+fhhoMHMzjWzMwkqYjwf5iRmdjZwDUGNuaMI1o14xMz6ZzlkBjCZYOjbJ4HhwK8ixC1SUsr9Y/xxxx2n1m+eRGkBXw/sl3w8g6AU/Y8IkviLBBUzwpgK3Obu9wGY2TnAauA0YG76jmZWDVwINLr7o8lt5wGvmdkR7p5tanSv6GaWFJI+xktKlIkYzUBz8nGqOsYAYBd3fyfMOcxsF+Aw0koWufsGM3sWOJpOCRg4gGC23RNp+y82s2XJ/QuSgAFaac04PKyNNtp3rMAZTRVVVGf40NFKa4/Ol0lLdUvGN45EVYJNVT2rfFzXXkd9e9fO3pbqFkYRbaieBMqx5Sv5F7kiRrpkGfrNEQ4ZSlBDblWn7asJZtZ1Njz5b9j9O0jeHIxchO3ggw/OOhEjkUj0uIR7XV1d1nJFI0eG7kLPqttzJAh68Xuijow320YxKi9x90Vq+Qr0MgGXOndvBBrTt5nZ/sCS7o4r1xlp5Rq3SF8V5SZcPqwFWunaeh1O11YuBC1dIuwvIlI2itoCdvctZvYycDxBiSPMbBDwceDWDIe8QbDq2vHAouT+HyK4GfhMD8OoAVi5cmWu/UREQkvLKTVhj4mjC+JW4A4ze5GgunIjwVTm+QBmtgi43N0fcvc2M/s+0JhciW0VcAvwx16MgBgJcOaZ2ZY2FhHplZHA62F2LHoCdvd7zWw4MJOdEzHGpxXxNIJF3VOuJZh1N5vgdtBvgSm9COF5gvHEKyCPww92WgKMLsB5C61c44byjb1c44byjb2QcdcQJN9QcyIAqtrbezakSjIzs3Z3r8q9Z2kp17ihfGMv17ihfGMvtbiLfRNORESSlIBFRGKiBCwiEhMl4PxrijuAHirXuKF8Yy/XuKF8Yy+puHUTTkQkJmoBi4jERAlYRCQmSsAiIjFRAhYRiYkSsIhITJSARURiogQsIhKTiq6I0RtmNh24mJ0rtk1x98XJ5z4I3AF8gmCR+Vvd/cawx4c9R7HjNrPTgQuAI4HBwGh3X5r2/ADgzuTzBwOz3f3cPMSc67olGXeua4e9bo7/s6L/zMNcM9fPPLlPoV7jBY29kK+XztQCzsDMzgauAS4DjgLeAR4xs/5m1g94hKAW3seBbwANZjYpzPHJ53OeI464gYHAHwmqXmdSQ1BZ7mbgD72JtZOs1y3xuHNdO+d1c71WwpwjjrhzHF+w13iIa/c69pDnyAu1gDObCtzm7vcBmNk5BOWRTgO2EqwnekyyOvQrZnYYQQvm7hDHzwVOCnGOosft7rOTx30408nd/T2ClgNmdkIv4ux83u6um/NnFVfcua4d8rrdvlbi+JmHuWaunzmFe40XPPZCvl46Uwu4EzPbBTgMeCK1zd03AM8CRyf/vpR8UaX8N3ComQ0McTy5zhFH3D25ZpGUa9w5hXytlKuK/X/LJyXgroYSfATpXPRzNUFx0EwFQVcDVcnnch1PiHPEEXepKte4wwjzWilXlfz/ljdKwCIiMVEC7motQa24zi2Q1Dt6ptbJcKA9+Vyu4wlxjjjiLlXlGncYYV4r5aqS/9/yRgm4E3ffArwMHJ/aZmaDCO7kPpP8e4SZDU477ARgobu/F+J4cp0jjrh7cs0iKde4cwr5WilXFfv/lk8aBZHZrcAdZvYisBBoBN4C5hO8gy8B7jGzKwmqOF9McDc7zPEAj4c4R9HjNrMhwAeA/ZObDjGzeuBv7r4xuc8hQH+gHtiavLO90d3/1tOgu7suIX5WccUd5tohrpvrtVL0n3mYuEP8zAv1Gi9G7AV7vXSmBJyBu99rZsOBmewcHD/e3bcCmNkpBAPMnyf4GPkf7n532OPdfVuuc8QRN/B54CdpXz+c/PcfgN8nHz8C7Je2zwSCsZKf6UXoWa/r7r8v4bjDXLvb6+b6Pytg7L2KO9fxhXqNFyP25ONCvV46UEUMEZGYqA9YRCQmSsAiIjFRAhYRiYkSsIhITJSARURiogQsIhITJWApe2Z2qZl9JsP2djObUsQ4lprZd4p1PSl/SsBSCS4l8wD5YwjWXxYpSZoJJxXL3ct9PQWpcErAUhbMbCzwPYKyPbUE6wzcCPwHwapbDWbWkNw9NYW5HbjA3e9InmMp8AtgA3ARsCtB7a9vAacmz7cPwQLp57n7O8njGgnqtI1Ii2cA8H5yv3uyxLwU+IW7fztt2xTgB+5elfy6P3ADMBHYE3gb+IO7n9mjH5SUFSVgKRf/Bfwf8C/ANmAMsAfwJYKE+RDwo+S+r3Zznq8CzwHnEhRdvIbg9+AzwJUESfn7wLXAhfn9FjK6HPgK8G1gKTCKoJyP9AFKwFLyzGwYwcpVn3f3BcnNT6Q9vw1YHrLLYRMw0d1bgcfM7AsEreED0yrrfhQ4k+Ik4I8Bc9z9p2nb7ivCdaUE6CaclIN1wJvAD8xsYjIh99T/JJNvyt+A1zuVVP8bMMLManpxnbBeBs5NjuQYU4TrSQlRApaS5+5tBB/L3wZ+Cqwysye6qcjbnUSnr7dm2VYN9OvB+aO6BvgBMA1YmBzKdl4RrislQAlYyoK7/9XdvwQMBk4BRgD3F+nymwkW5043ONOOUY9z983ufqW77wscQrCQ+d1mdkRPg5XyoQQsZcXdt7j74wSjFz5sZlUELdYBBbzscmCwmaXXODsx5HEHd9qW9Th3/yvBmGaAnrTupczoJpyUPDP7CPBdghbvGwTFHS8Cfufu7Wa2CDjVzB4DNgLu7hvyGMJjBEPOfmJmNwMHAl8LcdxDwK1m9i3gz8CXgQ+m72BmDwEvJJ/fCpyTvNaf8ha9lCy1gKUcrALWAFcRJMObgT8CZyWf/xZB4n2YoPzNkfm8uLuvAf6JYCTGbwgS6VdDHPpD4BbgEoLxx+8SjDVO9zRwevL5B5PXONXdl+QhdClxKkkkIhITtYBFRGKiBCwiEhMlYBGRmCgBi4jERAlYRCQmSsAiIjFRAhYRiYkSsIhITP4//UnSS7eQCUAAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f80511c4208>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#sns.set(style=\"whitegrid\", color_codes=True)\n", "fig = plt.figure(figsize=(5,5))\n", "gs = gridspec.GridSpec(2,1,height_ratios=[2,1])\n", "plt.subplot(gs[0])\n", "g = sns.boxplot(data=task1_transformed, x='stimulus', y='preference', hue='story', width=0.8, palette={'a':'red','b':'yellow','c':'cyan'})\n", "g.set_ylabel('individual')\n", "g.set(xticklabels=[], xlabel='',)\n", "g.set_xticks([])\n", "plt.subplot(gs[1])\n", "g2 = sns.boxplot(data=task1_transformed, x='stimulus', y='preference', width=0.6, palette='gray')\n", "g2.set_ylabel('aggregate')\n", "for box in g2.artists:\n", " box.set_facecolor(\"magenta\")\n", "fig.tight_layout()\n", "plt.savefig('task1.pdf', dpi=300,bbox_inches='tight')" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3X10XGWh7/FvJi+GNNSkiZKEIrQsu4+0xYMU7oVeUWkXr+YIeKre9uDltMsFrmWpQEVtYeWEg6AFKpqDLwftUXm5KMsq9oJwjz16lqT3WvB6oL16d1HaakhbmbRzOCGkeZncP2YS0mRe9uzZez977/l91mIxzcwz+3kyk9888+xnP0/VxMQEIiISvITpCoiIVCoFsIiIIQpgERFDFMAiIoYogEVEDFEAi4gYogAWETFEASwiYogCWETEEAWwiIghNaUWsCzrLcB5wCFg3PMaiYhEUzXQDjxn2/ZxJwVKDmAy4ftLF+VERCrBe4FnnTzQTQAfAnjkkUdoa2tzUVxEJH4OHz7MmjVrIJuRTrgJ4HGAtrY25s+f76K4iEisOR6a1Uk4ERFDFMAiIoYogEVEDFEAi4gY4uYknMgJtm3bRm9vLwCDg4MANDY2Tt2/fPly1q5da6Ru4L5+08vlKmu6XXFl4vdu6rVWD1g8NTw8zPDwsOlq5FVO/cLetrgy8XsP6phVpW7KaVnWGcD+nTt3ahqazLJu3ToAvv3tbxuuSW7l1C/sbYurUn7vXn0bc/Na9/X1sWLFCoAFtm0fcFJGPWARiaUofGPRGLCIxMbatWunerhR+MaiHrCIiCEKYBERQ0IdwL/61a8455xzTFdDRMQXoQ5gL4yOjpqugohITqE5Cfed73yH7373u6RSKd761rfy8Y9/nPvvv5/jx49P9YIfeOABLrzwQnp7e7nvvvs4ePAgHR0dbNiwgZUrVwLQ09PDCy+8wGmnncZTTz3FZZddxosvvsjq1atZtWrV1PFuvPFGTj/9dG655RYj7RURCUUA79+/ny9/+cts376dM888k6NHj3Lo0CEefPBBbrjhBn7zm99MPfbgwYPccMMNfOlLX+KSSy6ht7eXT33qU/zgBz/gXe96FwC7du2iu7ubzZs3Mzo6yvbt29m+fftUAB87doyf//zn7Nixw0h7JZxuvfVWBgYG8t6fTCaBN8+uz9TS0sKWLVt8qZvEUyiGIGpqapiYmOCll17ijTfeYN68eSxevDjnY5966imWLVvGFVdcQU1NDe973/u4+OKL+fGPfzz1mIULF7Jq1Spqamo46aST6Ozs5Le//S0HDhwAYMeOHSxdupQzzjgjgNZJVAwMDJBMHmFsrC/nf3V1o9TVjea8L5k8UjC8RXIJRQ/4tNNOY8uWLTz66KNs2rSJpUuX5h0aOHz4MKeeeuqs8n/605+m/t3e3n7C/XPnzuWSSy5h+/bt3HzzzWzfvp1rr73W+4ZI5DU1jdLdva/kcl1di074d9jXx5BwCEUAA1x22WVcdtllHD9+nAcffJAbb7yRe+65Z9bj2tra2L179wk/e+WVV07YHimRmN2xX7VqFRs3buTSSy/l4MGDXH755d43QiSHyauxpgdwVPm1aE2h4R+/hn5MHHOmUATwyy+/TH9/P8uWLaOuro45c+aQSCRoaWnhjTfe4NVXX+Vtb3sbAFdccQVf+9rXeOaZZ1i5ciW9vb3s3LmTxx57rOAxzj//fE466SQ2b97M5ZdfTkNDQxBNkwoVtSuy3PLqw2VgYIDkkSM05Zi1VFddDcBYX9+s+47W1pJMJnMGZbEQTSaTjAOjTU2z7quuqwOgb2xs1n21qVT+hpQoFAE8OjpKT08PL730ElVVVbzzne9k69atLFy4kI985CN88IMfZHx8nJ6eHi644AIeeOABtm7dyuc//3lOPfVU7r33Xs4666yix/nwhz/Mfffdx+233x5Aq0TiZ/oHC3j74dI0Okr3vtKGfzYsXgyMMzY2O5zr6rLBneM+gHS6ltF5Lezr7i7pmIu6ukp6fCGhCGDLsvj+97+f87477riDO+6444SfXXTRRVx00UU5H79+/fq8x5k/fz4LFizg3HPPdV9ZEQkVt+P2GzbkPtEfpFDMggjCG2+8wfe+9z1Wr15tuioiIkCFBPCOHTu44IILOPnkk/nYxz5mujoiIkBIhiD81tnZSWdnp+lqiIicoCJ6wCIiYaQAFhExRAEsImJIRYwBS3Hagl0keOoBS05R2NBQJOrUAxbA3yucRCQ39YBFRAwJpAd88/XXc+zo0SAORfO8eWz95jcDOZaISDkCCeBjR4/S9fzzQRyK7mXLAjmOiEi5NAYMbN++nYceeogDBw5w8sknc/HFF/OZz3yGOXPmmK6aiPgknc4sLVnq6ma1qRSD9fWe1EFjwMD4+Di33HILP/nJT7jnnnvYvXs3999/v+lqiUjMqQcMJ+yWfNppp3HjjTfyhS98gc2bNxusVfyFbXeFZDJJjrW5JaYSCRhuanK1HnBjjTfRqQAGXnzxRXp6eti3bx+vvfYa4+PjjIyMMDY2Ro1Hv2gpzvTuCuna2rKOGxXFPvggOhfepIFUqnbWnnyOyqahemjI+0qVoOLT5fXXX+cTn/gEK1as4JOf/CTNzc38+te/ZvPmzYyPjyuAfRTO3RXcee21GtJpd1vjmN7OPk571kVNxafLyy+/TCqVYuPGjcybNw+Ap59+2nCtJGrS6SrGyb2HWFD7izkVp4tuEpS3I8aI4b0hKz6AOzo6qK2t5eGHH+bqq6/mhRdeKLrBp0guoy7HE6VyBRLAzfPmBTY/tznbi3WqpaWFO++8k6985St861vf4j3veQ+f/vSn+dznPudTDUVEMgIJ4LBfmXbVVVdx1VVXnfCzq6++2lBtws/tLAMwP94pEiYVPwQhpRsYGCCZPEJTU45ZBgW2Ak+lwj3LIOpn1CV6FMDiipsTH26CTSTOFMARMH3eZpTnbIZd1M+oS/QogCMm6nM2jx07lnd8WOPHUmkUwBEwfd5mlOdsQmbdjSPJJKM5rvkN23xZEb8pgCVwmi8rkqHV0EREDFEAi4gYogAWETGk4gP42muv5d577zVdDRGpQMFsynnz9Rw7FtCmnM3z2Lo13Jc+S/yY2N4mTvPDBwcHGa6tpWtRaRfrpIGhoWp/KhWAYDblPHaUrq6ANuXs1qacUnmiPj+8UmkaGjAyMsKmTZv46U9/ypw5c1i/fj0f/ehHTVfLd9q6xzsmtreJ0/zwxsZG6lMpV4voNzSM+1Qr/ymAgccff5zrrruOH/7whzz77LN0d3ezaNEizjnnHNNV85W27hExSwEMLFiwgA0bNgCwcOFCdu/ezcMPP5wzgOM07gbBb90jIm9SAANnn332Cf9+97vfzZNPPlm0XKWOu7ldtjGVqiWdTvtTqRDIdxJucpnK8RyL9dSmUtDa6nvdJJwUwEBVVZXjx8Zp3E28k0hMQBpOyTGemxwZAaB97tzZBVtbaWlp8bt6ElIKYDLb0s/898KFCw3VJvzcLtvY1bWIVMrdlKuwmzt3jJqatpwfxvqglnwq/kIMyOyM3NPTw/79+3n44YfZuXMna9asMV0tEYm5YDblbJ4X2Pzc5ubSNuUEWLVqFa+88grXXHMNc+bM4fbbb+fcc8/1oXYShEqd1C/RE8ymnCG+Mu2hhx6auv3FL37RYE1ExI18J4QnP0zzzRMOw/lgjQFL7FTqpP5KlJiYIE0NNTWnzLpvZCRzMdHcue25yyaSvtbNCQWwiETW3LExatrcnfxct25dzt1XgqQAFpG8Cl2uDtrHr1wKYBHJa2BgIO8efqB9/MqlABaRgtzs4Qfax88JBXAIuV2lDPSVTyRKFMAhVOhrn77yicSHAjiktHW7iP9ML6CkABaRilRoEaSgFlAKJICvv/lmjh47FsShmNfczDe3bg3kWFK6dDod+N5pIrkUOlcS1AJKgQTw0WPHeD6gr8fLXJytFRExQUMQEqhEIhH43mkiYaXlKIHx8XF6enr4wAc+wJIlS7j00ksd7YghIlIOdSmAnp4eHn/8cW677TYWL17MH//4x6nthiSaUnmWoxzKbjbaMD570Z0QLI4lFabiA3h4eJht27Zx9913c/nllwPwjne8w3CtpByFzlCPZC9kmds+e4WsRDIJzN4hWsQvFR/ABw8e5Pjx45x//vmmqyIecXt2e926dYyN9flWL5PcXl2ZTCYhzzoQUr6KD2CRSjAwMEAyeYSmptk9/Lq6zLBMrg+fdLrW97pVsooP4NNPP526ujp2797NlVdeabo6gdLWPbPl210BCu+wkErVhn53eTcbqW7YsNin2ggogKmvr2ft2rXcddddJBIJlixZQl9fH6+//jorV640Xb3QGh5OlLwNTCoV7t5UsaubCu2w0NpavLzITIEE8Lzm5sAukJjX3FxymfXr1wNw1113cezYMU499VQ2bNjgddVCx+3WPTeddRbp6tK3gWlthWMBXRHpRrFV5LS9vHgtkAAO+6XBNTU13HTTTdx0002mqxIJ5W4D87rhbWBEwqLihyAkeKZXoArCtm3b6O3tBXLPMli+fDlr1641UrewcjN3O1VbS3TeFbMpgCVQYViBKmj1WkSoKLdzt1uLlA07BbAEKgwrUAVh7dq16uGWoFLeFzNpLQgREUMUwCIihiiARUQM0RhwEdqhWMKinPdiMpnUkg4hpAAuYmBggOSRIzSN5riGPjs9Zqxv9jX0qdpwX/Ul0eP2vQiQ1vsxlBTADjSNjpZ8tVip6yuIOOHmvQiwYbHWdAgjBbBIBUhTeKGhvOXSb14gI95TAEvZdNWXiDsKYPGUrvoKpwTul6McyXFpuHhDASxl01VfIu4ogEUkr3Q6/+JJxdSmUgzqG1FBuhBDRMQQ9YBDaHBwkNrh4ZJ7HepxiNcSCRhuamKfiw0VFnV10VijiClEPWAREUP08RRCjY2NpOrrS+51qMchEi36axWRijd9LjvMns/u11x2BbCIyAxBzWdXAItIxTM1l10BXOEqcSNEkbBQAFewSt0IUSQsFMAVrFI3QhQJC80DFhExRAEsImKIAlhExBCNAYtIqJi6KMIEBbCIhFqcF/lXAItIqFTSAv8aAxYRMUQ9YDGmksb6vDA4OMhwnisXi0kDQ0PV3ldKyqIAltCI81ifSC4KYDGmksb6vNDY2Eh9KkX3vtJ2NgbYsHgxDQ2z1/UQswIZA96zZw979uwJ4lAiIpERSA/40UcfBeDuu+8u+tjp44KDg4NA5pN/ksYFRSQufO8B79mzh71797J3796Se8HDw8MMDw/7VDMREbN87wFP9n4nbxfrBU8fF9SKXCJSiunfoGfOqoHwfYPWSTgRiaUozKrxPYBXr17Npk2bpm6LiPglajNrfA/gpUuXsmTJkqnbQXniiScA+NCHPhTYMUsxOR4e5O9ERMIlkCEIEz3fybHnsAZwKTNDRCSefAngmZeYzpxO5vdA+BNPPMHQ0NDU7bCF8OTMkMnb6gWLVKZAesCTU8mmz+f108yZF2EL4FJnhgRB6zKIBM+XAJ45EB70dLLxaVupj+fYVl2Ki8IZZJGoi+U0tObmZg4fPjx1O2zCODMkamePSxG1uaFSOWK5HnBra2vO22GxdOlSGhoaaGho0PhvwOrr69W7l9CIZQ84jD3M6fbs2TN1klAn4fwX5969RFsse8CTc4+XLFkSynCbeRJORCpTLHvAEM6ebylqUykWdXXN+nl1tuc83tCQswwhHHIRkdxiG8Bh7PlOKjZE0tLSkrdscmQEgPa5c2ff2dpasKyIhEtsAzjMil2evWXLlrxltUKcSHwogA2J+hCJiJRPAWxImIdIRCQYsZwFISISBeoBFzE4OMhwbS1dixaVVC5VW0t9dhEiEZFcFMAiUlC+KZGgaZHlUgAX0djYSH0qRfe+fSWV61q0iJqAVn8T8UsiMQFpOKUmd1RoWmR5FMAiktfcuWPU1LTlnfaoaZHlMR7At956KwMDAznvy7Vy1UwtLS0F582GhelF6kUkfIwH8MDAAMnkEZqaRmfdV1dXDcDYWF/OsqlUra9181PQi9SLSPgYD2CApqZRurtLG2MF6OoqbWaCSaYXqReR8AlFAIuIM6k8UyKHqjPfFhvy7ACT9rVW4pZnAex2LDeZTNLU5FUtROKr0IyCkezf2Nz29pz3J5JJYPYwn5jlWQAPDAyQPHKEptEcY7nZT+exvtljuena6I7jigSpnEWa1q1bl/dcipjj6RBE0+hoyfNlNyxe7GUVRCSPVKo253mToaHs8EXD7OGLVKpW11L4SGPAIhWg4PDFSHb4Yu7s4YvW1sJlpTwKYJEKoDWmw0kB7ICbM8+p2lr0zU1EColNAPt1pZnbM8+tRcrG1Z49ewCtdyziRKQD+LXXakink6xbty6zbGT26jKAdDoz83HyZ88888wJAe30EmZ9dSvN5C7Pd999t+GaiISfZwHsdt3cNG+ehS1VOl3FONA3Ngb19Zn/siaXyRvJLpM3DKTGxoDsMnkBKGedi6iscTHdnj172Lt379TtqPeCZ36rmvmaaf0OKVeke8AAo01N7OvuLqlMvrVNveZ2nYuornEx2fudvB23XnD9tA94ES94FsBu183dsHhxzvmHceFmnYsorXERZzPX7xDxmvEecJr8E8SLlk2/OdQg5q1evZpNmzZN3RZ/TR8iyTWklW+IpNjQSqGy4i3jAVyuxPBwyUMKtakUgwF8ncycGCz9wyWVqqW+Pnr7yS1dupQlS5ZM3ZbglDM8oqEVc4wHcAL3y1GuX78YEtrYOUzU8w2O2yESDa2Eh/EABnfXqE9yexKuMc8eV15qbGykvj7lagy4piaaC7Wr5yvinPEATkxMkKaGmppTZt1X6Bp1gEQi6WvdRET8ZDyA546NUdOWe9M/J0vs9WXn9oqIRI2nATy5ZsJQdTUjBcZm69LpqfUTZq6ZUOqZ3dpUikVdXVQPDZHIbpGdS7qujvHsRRm1qRRu19grtX6TwytDQ9WMjBT4ndSlp4ZaZi4B6PZst4jXdHGKtzwL4OnrHiQGB2HaZcEzJebMoSa7RkOhNROKnZ2dXm4wkSD/EWFOIvHmuG9rqyfrNJRSv0RiEArUMJGYMzXuW2gJQJ2xljDR+7E8VRMTEyUVsCzrDGD/zp07mT9/vi+VEhGJmr6+PlasWAGwwLbtA07KaA6XiIghCmAREUMUwCIihiiARUQMUQCLiBjiZhpaNcDhw4c9roqISHRNy0THO0y4CeB2gDVr1rgoKiISe+3AH5w80E0APwe8FzgExHcldRGR0lSTCd/nnBYo+UIMERHxhk7CiYgYogAWETFEASwiYogCWETEEAWwiIghCmAREUMUwCIihiiARUQMUQCLiBiiABYRMUQBLCJiiAJYRMQQBbCIiCEKYBERQxTAIiKGKIBFRAxRAIuIGKIAFhExRAEsImJIyZtyWpb1FuA8tCmniMh0U5ty2rZ93EkBN7sinwf80kU5EZFK8F7gWScPdBPAhwAeeeQR2traXBQXEYmfw4cPs2bNGshmpBNuAngcoK2tjfnz57soLiISa46HZt0EsFSw7u5uduzYkff+VCoFQFNTU97HdHZ20tXV5XndylGsXRDdtsWVF+9FMPuaaRaEeGpoaIihoSHT1fBFnNsWR1F4vaomJiZKKmBZ1hnA/p07d2oIQmZZtmwZAM8//7zhmngvzm2Lo6Bfr76+PlasWAGwwLbtA07KqAcsImKIAlhExBCdhBORUOrs7OTQIcczumbp7+8H3hyKcKu9vb3oCVq3FMAiMRfVmSuHDh2i/4/9dKQ7XJVvqGrI3Djgvg79iX73hR1QAItUuMmZAsWma5nQke7g+QFzJz2XtZTXey5GASwSc11dXQV7r5rdYY5OwomIGKIAFhExRAEsImKIAlhExBCdhJOKUO6cUvBmXqmfc0olehTAUhHKnVMK5c8r9XtOqUSPAlgqRtznlEr0aAxYRMQQ9YBFJJRSqRRDiSGj3xz6E/00pBp8e371gEVEDFEPWERCqampiaZUk/lxex+XyFAA+ySqK1BVwhKAImGhADYkrCtQVcISgCJhoQD2SZRXoNJ0LZFgKIClIlTCGXWJHs2CEBExRD1gqQiVcEZdokc9YBERQxTAIiKGKIBFRAxRAIuIGKIAFhExRAEsImKIAlhExBDNA5aK0Z/oL+tKuFRVdgGlCXeTefsT/XTgfkukSlTOa1bu6zV5fD9fMwWwnCCul+y2t7eX/RxD/dkFlDrc/UF30OFJPSpFub+rcl8v8P81UwBLRfBiacswL6AUR+W+ZlF4vRTAcgJdshs9YVjDWes3u6MAFok402s4a/1m9xTAIjFgcg1nrd/snqahiYgYoh6wzBL3qT8iYaEAlhNUwtQfkbBQAMsJKmHqj0hYKIBdKHfaD2jqj4gogF0pd9oPaOqPiCiAXdPW7SJSLk1DExExRD1gkYgzvYCSH4snVQr1gEVEDFEPWCTiTC+gpMWT3FMPWETEEAWwiIghCmAREUMUwCIihiiARUQMUQCLiBiiABYRMcToPODu7u6Cq3mlUtnFvZsKTzLs7Oykq6vL07qJiPgt1BdiDA1lF/cuEsAiUnmKdeCcLvlqsgNnNIC7uroKNlyLe4uIWw0N4V+fItQ9YBGRfIp14KJAASwl8eJrn8bsRTIUwOKpKHzty6XYBwvow0W8pwCWksTha59bUf1wkfBSAItQ2R8sYo4uxBARMUQBLCJiiAJYRMQQjQG7YHoTRNBGiCJxoB6wiIghvvaAOzs7OXTokOvyTq/lLqa9vb3oHM9SmN4EEbQRokgc+BrAhw4dov+P/XSkO1yVb6jKfsU+4L4O/Yl+94VFIqI/0e96SCxVlV11cMLdJ3p/op8O3P2NVzrfx4A70h3me4oiHujt7QVg+fLlhmtyovb29rLKD/VnVx3scBfAHXSUXYdKpZNw4qmwhpQX7r33XiB8bSt3eE2rDpqjABZPhTWkytXb28uuXbumbsetfWKGZkGIZyZDateuXVM94biY/GCZeVukHApg8YxCSqQ0vg5BxPmChXLOOoPOPEfNxo0bueaaa6Zui3hBY8AueHHGN45nnuMcUsuXL+fCCy+cui3iBV8DOK4XLHhxUUcczzzHPaTi9qEi5vneAy70VT1VlWKoaqjsYzRMNOT9Km/qq3qlbt0T55CK6odKpb4Xo8DXAC76FTkFlJ+/0EDeXm4Yv6pDfHdXiGpIVbK4vhejoGpiYqKkApZlnQHs37lzJ/Pnz/elUiIiUdPX18eKFSsAFti2fcBJGU1DExExxM0QRDXA4cOHPa6KiEh0TcvEaqdl3ARwO8CaNWtcFBURib124A9OHugmgJ8D3gscAsZdlC/VfmBBAMcxIa5ti2u7IL5tU7vKV00mfJ9zWqDkk3BBsyxrwrbtKtP18ENc2xbXdkF826Z2maGTcCIihiiARUQMUQCLiBgShQDuNl0BH8W1bXFtF8S3bWqXAaE/CSciEldR6AGLiMSSAlhExBAFsIiIIQpgERFDFMAiIoYogEVEDFEAi4gY4tuWRJZl3QJ8GmgFdgE32Lb9Uva+M4FvAP8FGAC+atv2FqflnTyHZVmbgL8GFgH/AfxP4LO2bZe1kHE57bIs6xrgk8C5QDMzVs63LKse+Gb2/ncBD9m2fd2M43veLgf1imS7itXNSb2yjyv0mofuNXNYp4KvWfYxpv7GfG2byffjTL70gC3L+jhwJ3ArcD7w78BTlmXVWZZVCzwFDAP/CbgJ6LIsa62T8tn7iz4HmTfNVuA84EOABWw32S5gDvBLYHOeQ1ST2SXvfuBf8zzG83YVqlfE21WsbkXrVey96OQ5CPg1c1ingq+Zqb8xB3Uru20On8Ovtp3AlyvhLMt6HviFbdsbs/8+GfgzsAYYIdOQNtu2j2bv/wLQadv22cXK27a93bKsDxZ7jhx1Og/YDZxi2/afTbRr2vP8BfA7CuwdZVnWY8Bwrh6Z1+0qVK9SftdhbZeTuuWrV7H3opPnyHEsX1+zUuqUr7ypvzEndZt2v6u2lfIc0x7nadsmed4DtizrLcBfAj+b/Jlt2/8B/Ar4z9n//s/ki5r1z8ASy7LmOChPsefIU7W3AmPAayba5eaYDpXVLgfi2q6iHL4X3TDeNgcC/xsLOV/a5scQRAuZLv6RGT//M3AK8PY891Vl7ytWHgfPcYLsH9LdZMZ6hktoy3TltstzHrWrmLi2ywkn78WShKhtxZj4GwslP9sW+1kQlmVVAw+R+UPaYLg6nlG7oieubYtru8D/tvkRwANk9oqb2UOY/ETN1Xt4OzCRva9YeRw8BwCWZSWAbwNLgUuzXx/dKrddnvG4XcXEtV1OOHkvOhLCthVj4m8sVIJom+cBbNv2ceDfgBWTP7Msq5HMmdT/nf3vPZZlNU8rthLYa9v26w7KU+w5smWqgH8ks4HoStu2XzXZrnKOPZ3X7XIgru0qyuF7sagwts2BwP/GwiSotvk1D/irwDcsy/o1sBf4O+AV4H+Q+QTdD3zHsqzbyEzv+DRwo8PyAM84eI6vk5k+8kFg3LKstuzPj9q2PWKiXZZlzQPeAZyR/dFZlmU1Ab+3bXsw+5izgDqgCRixLOsvgUHbtn/vV7sK1QsHv+uwtstJ3RzUq9h7MXSvmZN2OXjNTP2NBdE2Y+/HmXwJYNu2v2dZ1tuBe3lz8vrlkxW3LOsKMhO8nyPzNe/vbdve5rS8bdujxZ4DuD77/5k9lQ8AvzDRLuCvgH+a9u8nc9TpKeD0aY/pJDNX8f3Zf3verkL1sm37FxFul5O6FaxXsdc8K1SvGQ7aVay8qb8xJ3WjzLZlb5t6P55AO2KIiBgS+1kQIiJhpQAWETFEASwiYogCWETEEAWwiIghCmAREUMUwBIIy7I2Wpb1/hw/n7As64YA63HAsqwvBnU8kUIUwBKUjbw5yX26C/BhoWuRKPBtSyIRJ2zbdrymgkjcKIDFM5ZlLQXuI7N1Tw2ZtQS2AH9PZmWtLsuyurIPn7zMeQL4pG3b38g+xwHgMTL7cK0HTiKzf9dngSuzzzefzCLpf2vb9r9ny/0dmb3aJq/Zn9z7641GE3TpAAACdklEQVTs476Tp84HgMds2/7ctJ/dAHzdtu2q7L/rgC8Bq4C3Aa8C/2rb9hpXvyiRLAWweOknwP8F/iswCiwms5PA1WQC80fAt7KP/W2B5/kbMtu/XEdm48Q7ybxX3w/cRiaU/wH4AvApb5uQ0+eBjwGfAw4AHcClARxXYk4BLJ6wLKuVzOpTf2Xb9p7sj3827f5RoM/hkMMQsMq27XHgacuyPkSmN/zOaXvVvZvMXnxBBPB5wKO2bX932s/+ewDHlZjTSTjxylHgT8DXLctalQ1kt/4lG76Tfg/8YcbGir8H2rI7Fvjt34DrsjM5FgdwPKkQCmDxhG3baTJfy18FvgscsSzrZ9mdaUuVmvHvkTw/SwC1Lp6/VHeSWR92A7A3O5XtbwM4rsScAlg8Y9v272zbvhpoBq4A2oDvB3T4YTILbE/XnOuBpZazbXvYtu3bbNs+DTiLzGLl2yzLeo/byoqAAlh8YNv2cdu2nyEze+Evstu7jAD1Ph62D2i2LGv6PmaXOCz3rhk/y1vOtu3fkZnTDOCmdy8yRSfhxBOWZZ0N3EOmx/symQ0c1wM/t217wrKs/wdcaVnW08AgYHu8yeHTZKac/ZNlWfcD7+TNXQ0K+RHwVcuyPgv8BvgIcOb0B1iW9SPg+ez9I8B/yx7rf3lWe6lI6gGLV44ASeB2MmF4P/BL4Nrs/Z8lE7xPktni5lwvD27bdhL4azIzMZ4gE6R/46DoPwJfAW4mM//4NTJzjafbBVyTvf+H2WNcadv2fg+qLhVMWxKJiBiiHrCIiCEKYBERQxTAIiKGKIBFRAxRAIuIGKIAFhExRAEsImKIAlhExJD/D66GBfnSVwUZAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f8050e212e8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = plt.figure(figsize=(5,5))\n", "gs = gridspec.GridSpec(2,1,height_ratios=[2,1])\n", "plt.subplot(gs[0])\n", "\n", "g = sns.boxplot(data=task2_transformed, x='stimulus', y='preference', hue='story', width=0.8, palette={'a':'red','b':'yellow','c':'cyan'})\n", "sns.set_style({'legend.frameon':False})\n", "g.set_ylabel('individual')\n", "g.set(xticklabels=[], xlabel='',)\n", "g.set_xticks([])\n", "g.set(yticklabels=[], ylabel='',)\n", "g.set_yticks([])\n", "\n", "plt.subplot(gs[1])\n", "g2 = sns.boxplot(data=task2_transformed, x='stimulus', y='preference', width=0.6, palette='gray')\n", "g2.set_ylabel('aggregate')\n", "g2.set(yticklabels=[], ylabel='',)\n", "g2.set_yticks([])\n", "for box in g2.artists:\n", " box.set_facecolor(\"magenta\")\n", "fig.tight_layout()\n", "plt.savefig('task2.pdf', dpi=300,bbox_inches='tight')" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3X10XWWh5/FvXoltCKcvQhMKLb3rdl9pIxdp0WkvXqUs5S1XBKtOuTjcVizOGloLFbG85KYXW29BRDqAHaBXBXJxsYzOIAgzdvAuOVUQhiuJw2xU2kJIW0maYwkhbZKT+eOcnKbJed1n7/3ss8/vsxaLk5zznP08efnl6bOfl4qxsTFERMR/laYrICJSrhTAIiKGKIBFRAxRAIuIGKIAFhExRAEsImKIAlhExBAFsIiIIQpgERFDFMAiIoZUF1rAsqwTgKXAfmDU9RqJiJSmKqAR+I1t20fyKVBwAJMI3186KCciUg7OA57L54VOAng/wKOPPsqcOXMcFBcRCZ8DBw5w5ZVXQjIj8+EkgEcB5syZw9y5cx0UFxEJtbyHZnUTTkTEEF8CuLOzk87OTt/KlYIwt01E8uNLALe3t9Pe3u5buVIQ5raJSH48D+DOzk66urro6uoqqMfntFwpCHPbRCR/Tm7CFWRiL6+9vZ2tW7d6Wq4UBLFtO3fuJBqNpj4eGBgAoL6+HoDly5ezevXqnGUnl8tWtphrFsJE/ZxesxB+XCPbNdNd1+125brGjTfeSF9f33GvHRoayvjedXV1x32NZs2axbZt23z7WZzM8wCW0jT+Qzzxh9XLcsWW9eMaJr4mQbqGqetmu0ZfXx+9vQeJRIYBiMeryPYP+3j8HUZGYgDEYjWOrummikIP5bQsaz6wZ9euXXlNQ+vs7GTTpk0AbNmyhebm5ryu47RcKSiFtq1ZswaAhx56yJdyxZb14xomviZBuoap62a7xpo1axgZ6aat7bWC37e1dSHV1XMzvm+ma2bS3d3NihUrAM6wbXtvPmU87wE3NzezePHi1GOvy5WCMLdNRPLnyxDEqlWrfC1XCsLcNgm2XOOd4N2YZ5AcPlxNPN6b6u1O1NvbC5D2OTg2dlwsXwLYaS8vzL3DMLdNSoup8WPT4vEKRoHukZEpz1XV1kKG52piMdfqoJtwImVm9erVx/VuTY0fB8FwJMJrbW0FlVnY2ura9QO9FPn555/n7LPPNl0NERFPBDqA3TA8PGy6CiIiaQVmCOJ73/se3//+94nFYpx00kl84Qtf4O677+bIkSOpXvC9997LsmXLiEajfOtb32Lfvn00NTWxfv16LrjgAgC2b9/Ob3/7W0477TSeeuopLrzwQl555RVWrVrFypUrU9dbt24d8+bN44YbbjDSXhGRQPSA9+zZw7e//W0efPBBXn75ZTo6Ovjwhz/MAw88wLRp03j55Zd5+eWXWbZsGfv27ePaa6/li1/8Is8//zwbN25kw4YNvPrqq6n32717N2eeeSbRaJSbbrqJz3zmM3R0dKSe7+/v59lnn+WKK64w0VwRESAgPeDq6mrGxsb4/e9/T1NTEzNnzmTmzJk8//zzU1771FNPsWTJEi6++GIA/vZv/5bzzz+fn/zkJ3zgAx8AYMGCBanebnV1NS0tLWzbto29e/cyf/58nnjiCZqbm5k/f75vbQyTycs/J/Jr+o5IGAQigE877TS2bdtGe3s7mzZtorm5OePQwIEDBzj11FOnlH/zzTdTHzc2Nh73fENDA5/4xCfo6Ojg+uuvp6Ojg6uuusr9hpSJycs/J6qtrQJgZKR7ynPZln4GQbY/LKA/LuK+QAQwwIUXXsiFF17IkSNHeOCBB1i3bh133HHHlNfNmTOHF1544bjPvfXWW8cdj1RZOXVkZeXKlWzcuJFPfvKT7Nu3j4suusj9RpSRSGS44OWfra0LPaqNO7L9YYHS/uMiwRSIAH799dfp6elhyZIl1NbWMn36dCorK5k1axbvvfceb7/9Nu9///sBuPjii7nvvvt45plnuOCCC4hGo+zatYvHHnss6zXOPfdc3ve+93HzzTdz0UUXMW3aND+aJiXGyR8WCP4fFwmmQNyEGx4eZvv27SxbtoylS5fyzDPPcNddd7FgwQI++9nPcumll7JkyRJ+9atfMW/ePO69917uv/9+li5dyh133MGdd97JmWeemfM6V1xxBa+++qpuvolIIASiB2xZFj/84Q/TPrd582Y2b9583Oc++tGP8tGPfjTt66+77rqM15k7dy5nnHEG55xzjvPKiqQRhH0FpPQEIoD98N577/GDH/xAm+CIJ4Kwr4CUnrII4CeeeIJbb72VpUuX8vnPf950dSSkTO8rUMqcTm3s7e0lEvG0ap4qiwBuaWmhpaXFdDVEJIO+vj56Dx4kkmbrgNqq5OyT7qmzT+I1pT37pCwCWESCLzI8TNtrhc1AWb9okUe18UdoA3j8tGHtuysSXnESc7CdTAOMx6FqcND9ShUgENPQvNDe3n7c6cMiIkETyh5wZ2cnXV1dqcde9YLVyxYxqxLni2fWr1/EUcMLskLZA57Y8/WyF6xetogUI5QB7IfxXnZXV1eqJywiUohQBvDExRZeLbzwq5ctIuHlyxjw9WvX0n/okB+XYsbMmdy1YweLFy8GND4rIsHlSwD3HzpE64sv+nEp2pYsAbzr+Y5btWoVmzZt8uVaYdLf359xTwTtmSDlJpSzIKCwnm9HRwcPP/wwe/fu5cQTT+T888/nq1/9KtOnT8/6/uplF250dJSDvb0Mp1k/qj0TpNyENoALMTo6yg033MC8efPo6emhra2Nu+++m5tvvjlrOfV8ndGeCSIJCmA47rTk0047jXXr1vGNb3wjZwCr5xtM5bqxixQmHk/8y6rQP+41sRgDdXWu1EEBDLzyyits376d1157jcOHDzM6OsrRo0cZGRmhujq8X6KwBlW5buwipSe86ZKnd999l2uuuYYVK1bw5S9/mRkzZvDSSy9x8803Mzo6GuoADnNQlePGLlKYykoYcjgcVu9SLoQ2XfJdJvz6668Ti8XYuHEjM2fOBODpp5/2vH5BoaASMSeUCzEg/2XCTU1N1NTU8Mgjj/Dmm2/y05/+NOcBnyIibvClBzxj5szU/Fw/rlXIZjyzZs3i9ttv5zvf+Q4PPvggH/rQh/jKV77CTTfd5Et9RaR8+RLAd+3Y4cdlUr7+9a+nHre3t7N169asr7/sssu47LLLjvvcpz/96bSv3blzJ9FoFICBgQEA6uvrU88vX76c1atXO6q3iJSX0A5B+GFoaIihoSHT1RCREhXKm3BeLhNevXp1qoc7PkXroYcecvUaQef0FIJYrIZ4PG587mUmxZ6uUHPoUCDbVQoGBgYYqqmhdWFhX/s4MDhY5U2lfBDKANYyYREpBaEMYNAyYS85PYWgtXUhsVid8bmXmRR7usJQZGYg21UK6uvrqYvFHE2JnDZt1KNaeS+033n1fEUk6HQTTkTEkND2gEXkGKf7foD2YfaSAtgQnagsfurr66O39yCRSJp9P2qT+36MTN33IxYL/r4fpUwBbMj4Mulci0RE3OLkBuOGDWfS29urU0w8UvYBfNVVV3HWWWexceNG365ZyFJpEZPi8QpGSX9KCegUk2L5cyjn9Wvp7/fpUM4ZM7nrLn+XPhdq8onK6gVLkDk5wQQKP8UklmEhxmBya9Rpo1Onm8ULrlWw+HMoZ/8hWlt9OpSzzZ9Nf0zR2LGE0axZszI+dzQ5zNHQ2DjlucreXmDquHapKPshCICjR4+yadMmfvaznzF9+nSuu+46Pve5z3l2vWKWSrs5dlyuyz8leLKNE2db8r9mzRp6ew+mXT4+/jOaaaFGtiOJqgYHARidNm3KczWxGMyenbG+hVAAA48//jhXX301P/rRj3juuedoa2tj4cKFnH322Z5cz+lSaY0dixwva8/5aLLn3DC15wxQU9MPwClpViL2Hj0KQGNDw9SCs2dnvW4hFMDAGWecwfr16wFYsGABL7zwAo888ohnAQzOlkq7PXZcrss/JTyc9pxz8WujLQUw8MEPfvC4j8866yyefPJJT6+p3quIaCkyUFFRYboKeZnYa9ZmQyKlTz1gEsfST/54wYIFhmqTmbbZzI9uLkqpUACTOBl5+/btXHrppUSjUXbt2sXDDz9sulppfeQjHzFdBRFxiT+Hcs6Y6dv83BkzZhZcZuXKlbz11ltcfvnlTJ8+nVtvvZVzzjnHg9oV79e//jUAn/rUpwzXJLh0c1FKhT+HcgZ4ZdrEnu43v/lNgzXJTdPQylsxO5r19vYSiXhWNXFIQxAlREuYy1tfXx+9Bw8SGU6zo1lyue5I99QdzQDiNdrVLIgUwCIlJDI8XPDQCiSGVyR4NA2thGgamki4qAdcQjQNTSRcFMAlRj1fkfBQAJcY9XxFwkNjwCIihiiARUQM0RBEmTNxDIzpTbBFgsKXAF57/fUc6u/341LMnDGDHXfd5cu1Sl0xx8DEYhR8CkEsVkNVVRWzZ8xIe02/NsEWCQpfAvhQfz8vFnhAn1NLHBweWK6cbmadbUlstlMIZs/Ofky5X5tgiwSFhiCkYF6dQiBSbhTAwOjoKPfddx8dHR28/fbbnHrqqaxbt45LLrnEdNVEXBEnMQSUbtgoa7n4sbF5cZ8CGNi+fTuPP/44t9xyC4sWLeKNN95gaGjIdLVEJOTKPoCHhobYuXMnW7du5aKLLgLg9NNPN1wrEXdVApHIMG1tBe6RvH4RR9PMShF3lH0A79u3jyNHjnDuueearoqUOE2vk0KVfQCLuKGycgzicEr11F8pTa+TTMo+gOfNm0dtbS0vvPCCbrqJYw0NI1RXz0k7+0MzQySTsg/guro6Vq9ezZYtW6isrGTx4sV0d3fz7rvvcsEFF5iunoiEmC8BPHPGDN8WSMzMsMoqm+uuuw6ALVu20N/fz6mnnsr69evdrpqIyHF8CeCgLw2urq5mw4YNbNiwwXRVRKSMBHoIorOzEwjHHrg7d+4kGo2mPh4YGAASR6gDLF++nNWrV+csO7lcrrJSmGyLFXLtcxHGyQzxeObZHbnUxGIM1NV5UKvwCHQAj58CHMbTf8cXekwMUi/LSW6VY2PEqaa6+pS0z+ezz4VIIQIbwJ2dnXR1daUel3ovePXq1cf1Ugu5Mz6xrO6oe6dhZITqOelnMoD5r/3AwABDGbYPzSXOsR58ISorYSgS4TUH93AWtrZSn2ZanhwT2K/OeO93/HEYe8FBMnmIpDe5HeV46GiYQ8R9gQ1gMatOY3eBU19fT10sRttrhS0nBli/aFHasWsxK7ABvGrVKjZt2pR6LN6aPEQiIt4LbAA3NzezePHi1GMRkbAJbACDer4iEm6BDmD1fEUkzHQsvYiIIYHuAYtI+SmnKZEKYBEJtDBPiVQAi0iglNOUSI0Bi4gYoh6whFIsw54Jg1XJHc1G0+xoVlNDCDc0kwBTAEvoZNuV7Gjyhk5DY5odzXKUFXGbAjiHG2+8kb6+vrTPTb47O9msWbPYtm2bZ3WT9LJ9zU3vaCYykQI4h76+PnoPHiQyPDzludrkP2dHurunPBerqfG8biJS2hTAeYgMDxe8A5WTPVtFpLwogEXKRKbjlrIdtRSPe16tsqYAFikD2Y5bynbUUmVlr+d1K2cKYJEykO24pWw3JtesWUP3yIjn9StXWoghImKIesAiEhoTN/JJN000aBv5eBLAk3czGhgYAI4dpR60L4KIhE8pbOLjSw94aGgIOBbAIiJeKLWNfDwJ4MlfBK0+EhGZSjfhREQMUQCLiBiiABYRMUQBLCJiiOYBB5C2wBTxl6mDQBXAAdTX18fB3l6GI5Epz1XV1gKkXR5aE4t5XjeRcuDXHGIFcEANRyK81tZWUJmFra0e1UYk3EzNH9YYsIiIIeoBi5QQJ4eNjpfTgaPBowAWKRFODxsFHTgaVApgkRKhw0bDR2PAIiKGqAcsaXV2dgLQ3NxsuCZiWk0slnGGTdXgIACj06alLcdsjTxnowCWtB544AEA7rnnHsM1EZNyjRv3Hj0KQGNDw9QnZ8/WuHMOCmCZorOzkz179qQeqxdcvnKtqtTYc3FCE8BhOoVjYGCAmqGhghdW1MRiDLiwgme89zv+WL1gMSnMw2GBC+CJQTo5RCH/INUpHM4dPHgw7WO3mVp/L6Wlvb0dgK1btxquifsCF8ATFRKiYTqFo76+nlhdnaOlyPXVxX9LTz75ZPbu3Zt67JdSOMNL/NXZ2UlXV1fqcdh6wYEL4IlBWsohWsq+9KUvsWnTptRjr5Ta+V3iv/He7/jjsPWCAxfAYdLf359x28hs20r29vZCmp3Q/NLc3MwJJ5yQeiwi3lAA5zAwMMBQhvX32cRqaogPD9Pbe5BIZHjK87W1ibX7IyPdU56Lx2ucVdYlnZ2dHDlyJPVYISymrFq1KvWvsVWrVhmujfsUwB6LRIZpa3utoDLr1y/yqDb5Cfs/+6R0NDc3s3jx4tTjsFEA51BfX09dLEbba4WFaOvChcR0U0mkaGHs+Y7TXhAyxcQf+DD/8EtpaG5uDmXvF1zsAescs/AI+z/7RILCtQDu6+uj9+BBIsNpbjglN4se6Z56w+lQTQ29vb2ZZwOQObhB4e0V9XxFvOfqGHBkeLjgsdL1ixYBo2lnA2SbKQAQi5mdLRBm6vmKeC8QN+GczBQAaG0tbGqYiEiQ6CaciIghgegBO3X4cDXxuLPxY40di4hpJR3A8XgFo0D3yMiU56pqayHDczWxmNdVExHJqaQDGGA4EnG0a1jQZToGRkfAiIRHyQdwGFVWjkEcTkmztaSOgCkNE/c6Tjccpr2OBRTAgdTQMEJ19Zy023Bqi87So32OJRMFsIgHtNex5EPT0EREDFEPOA+xDPsBDyaXWE8bHU1bRkQkGwVwDtluah1N3lxpaGyc8txsEidiSOnSoaHiNQVwDtkWa+S6IbZmzRpGRt71pF7iP91ME7cpgKVoYZ1ypRtp4jUFsLgqiL3EsP6BkNKnAJailVJPMYh/IKR8lXQAx+OZl+xmUxOLMaBfxLJRSn8gpLxoHrCIiCEl3QOurIQhh5vx1KfZZ0FExE/qAYuIGKIAFhExRAEsImKIAlhExBAFsIiIIQpgEQmlzs5OOjs7fS9bCAWwiIRSe3s77e3tvpcthCbDemhgYIChoRpaW6fuJZxNLFZDXd2AR7USCb/Ozk66urpSj5ubm30pWyjXAnhgYIDBmhrWL1pEPI/Xj3e948ChQzWsX78o8XEehSuTheNxqDl0iIWtrVQNDlKZPLAynXhtbeok4WJODy50Y5d4PBGohbarmGtKeXD6c5Frn+NiygblZ3Fi77W9vZ2tW7f6UrZQrgVwXV0dQ0NDAFSMjTE2NpbxtRUVFVBRkfgglTaVyefyKEuyLHGqKis5pbqagcpKhrLUb3pl5bHVby6dHpxrY5d58+bR19cHjPeGM9ewrq6O+vr61MeZ6qfNZCSdYn4uTJUVqMgWdulYljUf2LNr1y7mzp3rSaVERIrR2dnJpk2bANiyZUvBQxBOynZ3d7NixQqAM2zb3ptPGY0Bi0joNDc3s3jx4tRjv8oWSgEsIqG0atUqI2ULoQAWkVAqpvfqdc93nOYBi4gYogAWETHEyRBEFcCBAwdcroqISOmakIlV+ZZxEsCNAFdeeaWDoiIiodcI/DGfFzoJ4N8A5wH7gVEH5UVEwqiKRPj+Jt8CBS/EEBERd+gmnIiIIQpgERFDFMAiIoYogEVEDFEAi4gYogAWETFEASwiYogCWETEEAWwiIghCmAREUMUwCIihiiARUQMUQCLiBiiABYRMUQBLCJiiAJYRMQQBbCIiCEKYBERQxTAIiKGFHwop2VZJwBL0aGcIiITpQ7ltG37SD4FnJyKvBT4pYNyIiLl4DzguXxe6CSA9wM8+uijzJkzx0Hx/H384x8H4Nlnn/X0OiasXbsWgB07dhiuiYi44cCBA1x55ZWQzMh8OAngUYA5c+Ywd+5cB8Xzs2PHDg4fPgzAk08+mQqsMIhGo7z44osA7Nu3j+XLlxuukYi4KO+hWScB7Is777zzuMdhCuDJbSulAG5ra+OJJ57I+HwsFgMgEolkfE1LSwutra2u160YudoF4W1bObcLzLZNsyDEVYODgwwODpquhifC2ja1y5yKsbGxggpYljUf2LNr1y7PhyBuu+02ADZv3hyqHnA0GuXyyy8HoKOjo6R6wLksWbIEIDXEEiZhbVtQ29XS0sL+/XkPp07R09MDQFNTU1H1aGxszPmvI4Du7m5WrFgBcIZt23vzee/ADkGsXbs29U/1MIUvwPLly1m2bFnqsYhMtX//fnre6KEp7ixAp1VMSzzY67wOPZU9zgvnIbABDLBx40bTVfBMmNsm4pameBMv9pnrmS+ZtcTT9w90AIet5zuRer4ioptwIiKGKIBFRAxRAIuIGBLoMeBoNApovFSKV+yUJjg2rWl82pYT+U5pkvIQ6AAen4YWxgAO6h8Xt+ZeFhNS4H5QFTulCYqf1uT1lCYpPYEN4Gg0yu7du1OPgxZUxQrqH5cwz70M+5QmKT2BDeBS3i8hl6D/cVFQifhDN+EMmPzHRUTKU2ADeOJKMa0aE5EwCuwQxPLly1m0aFHqcZhs3LgxtRmP/riIpBeLxRisHDQ6JNVT2cO02DTP3j+wARxmy5cvp6GhIfVYRMpTYAM4Go3yu9/9LvU4TEEVjUZTp32ErW0ibolEIkRiEfM3hLPv516UwI4Bh/lGVZjbJiL5C2wAh9mf//zntI9FpLwENoA1C0JEwi6wY8BhPjXipJNOSvtYvFMOd9Sl9AQ2gCG8Pd8gT0NTUIn4J9ABHLaer5hTDnfUpfQEOoDDKsj7XCioRPyjAPZIW1tbxu0U//SnP6Uev/TSSxm3bmxpaaG1tdWT+kl4BGELUa/2Oe6p7HE8HBariAEQGXP+17ynsocmijvWPhsFsAENDQ28/fbbqccixTC9hahX24c2NjYWVX6wZxCASJPzAG6iqeh6ZKMA9khra2vW3uvpp58OQFdXl19VkhAzuYWoVzdsi+1Rj/foX3zR3HBaLgpgQ9TzFREFsCF1dXWmqyAihgV2JZyISNgpgEVEDFEAi4gYojFgmSLscy9FgkIBLMcph7mXIkGhAJbjlMPcS5Gg0BiwiIghCmAREUMCHcDRaJRoNGq6GiIingj0GPD4to1B2q5RRMQtgQ3gaDTK7t27U48VwiLpmT7FRCeYOBfYAA7ypuVSmoqZ3wzFz3HW/GaZLLABLOImN+YVFzvH2av5zaZPMdEJJs4FNoCDfHCllB43TmvQHGdxW2ADOMzH0ouIQIADGNTzFZFwC3QAq+crImEW6IUYIiJhpgAWETFEASwiYogCWETEEAWwiIghRmdBtLW1ZZ0gH4sll35Gsi+zaWlpobW11dW6iYh4LdA94MHBQQYHB01XQ0TEE0Z7wK2trVl7rlr6KZIfkwepapMh5wK9ECOoWlpa2L9/f1Hv0dPTAxz7I+NEY2OjK3scSGkzfZCqqUNUcw1h5vs7ZnIIUwHswP79++l5o4emuPO/+tMqkvun7nVWvqeyx/G1JVx0kGp606YFf49iBbBDTfEmY9v/AcY23xYJilxDmKUg0DfhRETCTAEsIqFUCof6aghCREKpFA71VQ9YREJn/FDf3bt3B7oXrAAWkdCZfKhvUGkIwgHTx4CDjgIXCQMFsBTEjcnv2rtDvFYqh/oqgB0wfQw4BPco8FKY/C7hVyqH+iqApSBhmPwu5SHIPd9xngZwsXsmuLFfAmjPBJFyFOSe7zhPA7jYPROK3S8BtGeCiASX50MQ2jNBRCQ9zQMWV5XC8k+RoNBNOHFVKSz/FAkK9YDFNaWy/FMkKNQDFtdMXv5ZSr3gXAtMQItMxH0KYJE8aZGJuE0B7FAxhyBCOA9CLJXln+logYmYoAB2wI0DCEv1IMRsSmX5p0hQKIAdcGNVXVgPQiy1nq+E144dOwBYu3at4ZpkpgAWV6nnK0ExflM4yAGsaWgiEjo7duzg8OHDHD58ONUTDiJPe8CxWIx3Kt+h6f3pbxbFiTPGWNHXqaCCygx/S0YZ5cTYiUVfo1DaN1eCohx/FidPiQxqL9jTAJ4+fTqDg4OZXxAHF/IXKsjYl6+iiunTp7twEXdpSpMEhX4WzakYGyssAS3Lmg/s2bVrF3PnzvWkUiIixdixYwe33XYbAJs3b/alB9zd3c2KFSsAzrBte28+ZTQGLCKhs3btWhoaGmhoaAjs8AM4G4KoAjhw4IDLVRERcc8111wDJHqmfpiQiVX5lnEyBPE3wC8LKiQiUj7Os237uXxe6KQH/BvgPGA/MOqgfKH2AGf4cB0Twtq2sLYLwts2tat4VUAjiYzMS8E9YL9ZljVm23aF6Xp4IaxtC2u7ILxtU7vM0E04ERFDFMAiIoYogEVEDCmFAG4zXQEPhbVtYW0XhLdtapcBgb8JJyISVqXQAxYRCSUFsIiIIQpgERFDFMAiIoYogEVEDFEAi4gYogAWETHEsyOJLMu6AfgKMBvYDVxr2/bvk8/9BfBd4G+APuAe27a35Vs+n/ewLGs9cA0wHxgBXgJusm07752K3G6XZVmXA18GzgFmMGnnfMuy6oAdyec/ADxs2/bVk67vervyqFdJtitX3fKpV/J12b7ngfue5VmnrN+z5GtM/Y552jaTP4+TedIDtizrC8DtwI3AucCfgacsy6q1LKsGeAoYAj4MbABaLctanU/55PM53wN4A9gInAUsA/4I/E/LsiKm2gVMJ7GX8s0ZLlEFDAJ3A/+W4TWutytbvUq8XbnqlrNeuX4W83kPfP6e5VmnrN8zU79jedSt6Lbl+R5ete04nqyEsyzrReAXtm1vTH58IvAn4ErgKNABzLFt+1Dy+W8ALbZtfzBXedu2OyzLujTXe6SpUwOJX568N0t2u10T3uevgFfJcnaUZVmPAUPpemRutytbvQr5Wge1XfnULVO9cv0s5vMeaa7l6feskDplKm/qdyyfuk143lHbCnmPCa9ztW3jXO8BW5Z1AvDXwM/HP2fb9jvA88BHkv/9n/FvatL/AhaZ/o+5AAAFlklEQVRbljU9j/Lkeo80daoFvgT0A78z0S4n18yjTkW3Kw9hbVc+9cjnZ7HQ9wxE2/Lg++9YUHnZNi/GgGeR6OIfnPT5PwGnAEcyPFcBnJx8Plt5kq/L9h57ACzLOg/4GfC+5Os/Ydt2v5NGUXy79ji87hQutyuXvL7WbvC5XfnI9T3PWwDblouJ37FA8aNtYZ8F8SKJHswyEuNZP7Qsa7bZKrlC7So9YW1bWNsFPrTNix5wH4mz4ib3EE4GXiAxVjp5DOlkYIzEX9iRHOVJvi7bewBg2/Z7wB+S/z1vWdbvgS8AdxXaKIpvl2tcblcueX2t3eBzu/KR63uetwC2LRcTv2OB4kfbXO8B27Z9BPh3YMX45yzLqidxJ/XXyf8+ZFnWjAnFLgC6bNt+N4/y5HqPLNWrIBHwvrfLyTUL4LhdeQhru3LK82fRKaNty4Pvv2MlwPW2eTUP+B7gu5ZlvQR0Af8IvAX8lMRf0D3A9yzLugWwSMyxXJdneYBncr2HZVlbgCeBbmAm8J+B9094D9/bZVnWTOB0EnMLAc5MTmv5g23bA8nXnAnUAhHgqGVZfw0M2Lb9B6/ala1e5Pe1DmS78qlbrnqR+2cxcN+zfNqVx/fM1O+YH20z9vM4mScBbNv2DyzLOhm4k2OT1y+ybfsogGVZF5OY4P0bEv/M+yfbtnfmW9627eFc7wE0Af9K4p+Ph0iM56ywbft1U+0C/g74lwkfP5n8/8eBXyQfPwXMm/CaFhJzFT/mVbuy1cu27V+UcLvyqVvWeuX6nicF6nuWT7tylTf1O5ZP3SiybcnHpn4ej6MTMUREDAn7LAgRkcBSAIuIGKIAFhExRAEsImKIAlhExBAFsIiIIQpg8YVlWRsty/pYms+PWZZ1rY/12GtZ1jf9up5INgpg8ctGjk1yn+g/kNh3VqTseHYkkUg+bNsudk8FkZKlABbXWJbVDHyLxNE91ST2EtgG/BOJJZ2tlmW1Jl8+vsx5DPiybdvfTb7HXuAx4B3gOhJ7se4AvgZckny/uSQ2Sf8H27b/nCz3jyTOapszoT51wHvJ130vQ533Ao/Ztn3ThM9dC9xv23ZF8uNa4J+BlST2A3gb+Dfbtq909IUSSVIAi5v+B4kTA/4jMAwsAk4CPk0iMH8MPJh87f/N8j5/T2K7x6tJHJx4O4mf1Y8Bt5AI5f8KfAP4L+42Ia2vA58HbgL2ktgn4JM+XFdCTgEsrkhuVD0f+DvbtjuTn/75hOeHge48hxwGgZW2bY8CT1uW9SkSveG/nHBW3VkkzuLzI4CXAu22bX9/wuf+1YfrSsjpJpy45RDwJnC/ZVkrizw54H8nw3fcH4A/TjpY8Q/AHMuyqoq4Tr7+Hbg6OZNjkQ/XkzKhABZX2LYdJ/HP8reB7wMHLcv6efJk2kLFJn18NMPnKoEaB+9fqNuB+4H1QFdyKts/+HBdCTkFsLjGtu1Xbdv+NDADuBiYA/zQp8sPkdhge6IZ6V5YaDnbtods277Ftu3TgDNJbFa+07KsDzmtrAgogMUDtm0fsW37GRKzF/7KsqwKEj3WOg8v2w3MsCxr4vltn8iz3AcmfS5jOdu2XyUxpxnASe9eJEU34cQVlmV9ELiDRI/3dRIHOF4HPGvb9phlWf8PuMSyrKeBAcC2bfsdF6vwNIkpZ/9iWdbdwF8Ca/Mo92PgHsuyvga8DHwW+IuJL7As68ckTkR4mcQfkv+UvNavXKu9lCX1gMUtB4Fe4FYSYXg38EvgquTzXyMRvE+SOOLmHDcvbtt2L/AZEjMx/juJIP37PIr+N+A7wPUk5h8fJjHXeKLdwOXJ53+UvMYltm3vcaHqUsZ0JJGIiCHqAYuIGKIAFhExRAEsImKIAlhExBAFsIiIIQpgERFDFMAiIoYogEVEDPn/reiLwFtZTDEAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f8050e93198>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#sns.set(style=\"whitegrid\", color_codes=True)\n", "fig = plt.figure(figsize=(5,5))\n", "gs = gridspec.GridSpec(2,1,height_ratios=[2,1])\n", "plt.subplot(gs[0])\n", "g = sns.boxplot(data=task3_transformed, x='stimulus', y='preference', hue='story', width=0.8, palette={'a':'red','b':'yellow','c':'cyan'})\n", "g.set_ylabel('individual')\n", "g.set(xticklabels=[], xlabel='',)\n", "g.set_xticks([])\n", "\n", "g.set(yticklabels=[], ylabel='',)\n", "g.set_yticks([])\n", "plt.subplot(gs[1])\n", "g2 = sns.boxplot(data=task3_transformed, x='stimulus', y='preference', width=0.6, palette='gray')\n", "g2.set_ylabel('aggregate')\n", "\n", "g2.set(yticklabels=[], ylabel='')\n", "g2.set_yticks([])\n", "g2.legend('')\n", "for box in g2.artists:\n", " box.set_facecolor(\"magenta\")\n", "fig.tight_layout()\n", "plt.savefig('task3.pdf', dpi=300, bbox_inches='tight')" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhAAAABQCAYAAABIx0zMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAAzdJREFUeJzt3b+KXGUcxvHfOInbLKx/smAwjRg8RWwtU1jZ2QreQcBCryCxsLDzEmwXwcZbSJcrOKCkiVioMcssMWtcj412GuYZ9/XNOfv5VFvMC88LO/CFc2BW0zQVAEDihd4DAID5ERAAQExAAAAxAQEAxAQEABATEABATEAAADEBAQDEBAQAEBMQAEDsUnpgGIa9qnqnqn6oqrNzXwQA/J/WVXW1qu6N43i67aFnBsQwDHeq6vZ/2wUAzMDNqrq77YdX6Y9pDcPwZlV9+8XjX+twoT/EdeuDz3tPaOrKjS97T2jq3a/e7z2hmQ9vfNJ7QlPTx2/3ntDUNx897j2hqffe+qz3hKa+Przfe0ITm82mjo6Oqqquj+P43bbn4kcY9ddji8NpqtcWGhDr/Vd7T2jq8iuXe09o6uDFl3pPaOba/u+9JzQ1XVv2a1kv7616T2jq9f0rvSc0dXDwsPeE1qLXEpb9bQUAmhAQAEBMQAAAMQEBAMQEBAAQExAAQExAAAAxAQEAxAQEABATEABATEAAADEBAQDEBAQAEBMQAEBMQAAAMQEBAMQEBAAQExAAQExAAAAxAQEAxAQEABATEABATEAAADEBAQDEBAQAEBMQAEBMQAAAMQEBAMQEBAAQExAAQExAAAAxAQEAxAQEABATEABATEAAADEBAQDEBAQAEBMQAEBMQAAAMQEBAMQEBAAQExAAQExAAAAxAQEAxAQEABATEABATEAAADEBAQDEBAQAEBMQAEBMQAAAsUs7nFlXVf24Wp3zlOfH2cnPvSc09fTh094Tmjr+7VHvCc08ONnlKzsf04M/ek9o6pfTqfeEpr4/+an3hKaOj497T2his9n8/ec6Obeapn//hx6G4U5V3d55FQAwFzfHcby77YefGRD/ZBiGvap6UlXXq+os2zYb96vqjd4jGnK/+Vry3arcb+7cb57WVXW1qu6N43i67aE4IKqqhmGYxnFc7DMM95u3Jd9vyXercr+5c7+LxUuUAEBMQAAAMQEBAMR2DYhPz3XF88f95m3J91vy3arcb+7c7wLZ6SVKAOBi8wgDAIgJCAAgJiAAgJiAAABiAgIAiP0JwuSVW1Zv18wAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f80901d0080>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "[(0.8941176470588235, 0.10196078431372557, 0.10980392156862737),\n", " (0.21568627450980393, 0.4941176470588236, 0.7215686274509804),\n", " (0.3019607843137256, 0.6862745098039216, 0.29019607843137263),\n", " (0.5960784313725492, 0.3058823529411765, 0.6392156862745098),\n", " (1.0, 0.4980392156862745, 0.0),\n", " (0.9999999999999998, 1.0, 0.19999999999999996),\n", " (0.6509803921568629, 0.33725490196078434, 0.1568627450980391),\n", " (0.9686274509803922, 0.5058823529411766, 0.7490196078431374),\n", " (0.6, 0.6, 0.6)]" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sns.choose_colorbrewer_palette('qualitative')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }