Mercurial > hg > from-my-pen-to-your-ears-supplementary-material
annotate demo/rel.py @ 0:4dad87badb0c
initial commit
author | Emmanouil Theofanis Chourdakis <e.t.chourdakis@qmul.ac.uk> |
---|---|
date | Wed, 16 May 2018 17:56:10 +0100 |
parents | |
children |
rev | line source |
---|---|
e@0 | 1 #!/usr/bin/env python3 |
e@0 | 2 # -*- coding: utf-8 -*- |
e@0 | 3 """ |
e@0 | 4 Created on Mon Apr 30 17:49:36 2018 |
e@0 | 5 |
e@0 | 6 @author: Emmanouil Theofanis Chourdakis |
e@0 | 7 """ |
e@0 | 8 |
e@0 | 9 from sklearn.svm import LinearSVC |
e@0 | 10 from sklearn.feature_extraction import DictVectorizer |
e@0 | 11 |
e@0 | 12 class RelModel(LinearSVC): |
e@0 | 13 ## TODO: Add more LinearSVC parameters here |
e@0 | 14 def __init__(self): |
e@0 | 15 super(RelModel, self).__init__() |
e@0 | 16 self.dv = DictVectorizer() |
e@0 | 17 |
e@0 | 18 def fit(self, X, y, sample_weight=None): |
e@0 | 19 |
e@0 | 20 # Transform data and save transformer |
e@0 | 21 x = self.dv.fit_transform(X) |
e@0 | 22 |
e@0 | 23 return super(RelModel, self).fit(x, y, sample_weight) |
e@0 | 24 |
e@0 | 25 def predict(self, X): |
e@0 | 26 # Transform data with transformer |
e@0 | 27 x = self.dv.transform(X) |
e@0 | 28 |
e@0 | 29 return super(RelModel, self).predict(x) |