Mercurial > hg > emotion-detection-top-level
view Code/Descriptors/Matlab/MPEG7/FromWeb/VoiceSauce/func_GetH1H2_H2H4.m @ 4:92ca03a8fa99 tip
Update to ICASSP 2013 benchmark
author | Dawn Black |
---|---|
date | Wed, 13 Feb 2013 11:02:39 +0000 |
parents | |
children |
line wrap: on
line source
function [H1H2, H2H4] = func_GetH1H2_H2H4(H1, H2, H4, Fs, F0, F1, F2, B1, B2) % [H1H2, H2H4] = func_GetH1H2_H2H4(H1, H2, H4, Fs, F0, F1, F2, B1, B2) % Input: H1, H2, H4, vectors % Fs - sampling frequency % F0 - vector of fundamental frequencies % Fx, Bx - vectors of formant frequencies and bandwidths % Output: H1A1, H1A2, H1A3 vectors % Notes: Function produces the corrected versions of the parameters. They % are stored as HxHx for compatibility reasons. Use func_buildMData.m to % recreate the mat data with the proper variable names. % Also note that the bandwidths from the formant trackers are not currently % used due to the variability of those measurements. % % Author: Yen-Liang Shue, Speech Processing and Auditory Perception Laboratory, UCLA % Copyright UCLA SPAPL 2009 if (nargin == 7) B1 = func_getBWfromFMT(F1, F0, 'hm'); B2 = func_getBWfromFMT(F2, F0, 'hm'); end H1_corr = H1 - func_correct_iseli_z(F0, F1, B1, Fs); H1_corr = H1_corr - func_correct_iseli_z(F0, F2, B2, Fs); H2_corr = H2 - func_correct_iseli_z(2*F0, F1, B1, Fs); H2_corr = H2_corr - func_correct_iseli_z(2*F0, F2, B2, Fs); H4_corr = H4 - func_correct_iseli_z(4*F0, F1, B1, Fs); H4_corr = H4_corr - func_correct_iseli_z(4*F0, F2, B2, Fs); H1H2 = H1_corr - H2_corr; H2H4 = H2_corr - H4_corr;