comparison Code/Descriptors/Matlab/MPEG7/FromWeb/VoiceSauce/shrp.m @ 4:92ca03a8fa99 tip

Update to ICASSP 2013 benchmark
author Dawn Black
date Wed, 13 Feb 2013 11:02:39 +0000
parents
children
comparison
equal deleted inserted replaced
3:e1cfa7765647 4:92ca03a8fa99
1 function [f0_time,f0_value,SHR,f0_candidates]=shrp(Y,Fs,F0MinMax,frame_length,timestep,SHR_Threshold,ceiling,med_smooth,CHECK_VOICING)
2 % SHRP - a pitch determination algorithm based on Subharmonic-to-Harmonic Ratio (SHR)
3 % [f0_time,f0_value,SHR,f0_candidates]=shrp(Y,Fs[,F0MinMax,frame_length,TimeStep,SHR_Threshold,Ceiling,med_smooth,CHECK_VOICING])
4 %
5 % Input parameters (There are 9):
6 %
7 % Y: Input data
8 % Fs: Sampling frequency (e.g., 16000 Hz)
9 % F0MinMax: 2-d array specifies the F0 range. [minf0 maxf0], default: [50 550]
10 % Quick solutions:
11 % For male speech: [50 250]
12 % For female speech: [120 400]
13 % frame_length: length of each frame in millisecond (default: 40 ms)
14 % TimeStep: Interval for updating short-term analysis in millisecond (default: 10 ms)
15 % SHR_Threshold: Subharmonic-to-harmonic ratio threshold in the range of [0,1] (default: 0.4).
16 % If the estimated SHR is greater than the threshold, the subharmonic is regarded as F0 candidate,
17 % Otherwise, the harmonic is favored.
18 % Ceiling: Upper bound of the frequencies that are used for estimating pitch. (default: 1250 Hz)
19 % med_smooth: the order of the median smoothing (default: 0 - no smoothing);
20 % CHECK_VOICING: check voicing. Current voicing determination algorithm is kind of crude.
21 % 0: no voicing checking (default)
22 % 1: voicing checking
23 % Output parameters:
24 %
25 % f0_time: an array stores the times for the F0 points
26 % f0_value: an array stores F0 values
27 % SHR: an array stores subharmonic-to-harmonic ratio for each frame
28 % f0_candidates: a matrix stores the f0 candidates for each frames, currently two f0 values generated for each frame.
29 % Each row (a frame) contains two values in increasing order, i.e., [low_f0 higher_f0].
30 % For SHR=0, the first f0 is 0. The purpose of this is that when you want to test different SHR
31 % thresholds, you don't need to re-run the whole algorithm. You can choose to select the lower or higher
32 % value based on the shr value of this frame.
33 %
34 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35 % Permission to use, copy, modify, and distribute this software without fee is hereby granted
36 % FOR RESEARCH PURPOSES only, provided that this copyright notice appears in all copies
37 % and in all supporting documentation.
38 %
39 % This program is distributed in the hope that it will be useful,
40 % but WITHOUT ANY WARRANTY; without even the implied warranty of
41 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
42 %
43 % For details of the algorithm, please see
44 % Sun, X.,"Pitch determination and voice quality analysis using subharmonic-to-harmonic ratio" To appear in the Proc. of ICASSP2002, Orlando, Florida, May 13 -17, 2002.
45 % For update information, please check http://mel.speech.nwu.edu/sunxj/pda.htm.
46 %
47 % Copyright (c) 2001 Xuejing Sun
48 % Department of Communication Sciences and Disorders
49 % Northwestern University, USA
50 % sunxj@northwestern.edu
51 %
52 % Update history:
53 % Added "f0_candidates" as a return value, Dec. 21, 2001
54 % Changed default median smoothing order from 5 to 0, Jan. 9, 2002
55 % Modified the GetLogSpectrum function, bug fixed due to Herbert Griebel. Jan. 15, 2002
56 % Several minor changes. Jan. 15,2002.
57 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
58
59 %t0 = clock;
60 %------------------ Get input arguments values and set default values -------------------------
61 if nargin<9
62 CHECK_VOICING=0;
63 end
64 if nargin<8
65 med_smooth=0;
66 end
67 if nargin<7
68 ceiling=1250;
69 end
70 if nargin<6
71 SHR_Threshold=0.4; % subharmonic to harmonic ratio threshold
72 end
73 if nargin<5
74 timestep=10;
75 %timestep=6.4;
76 end
77 if nargin<4
78 frame_length=40; % default 40 ms
79 end
80 if nargin<3
81 minf0=50;
82 maxf0=500;
83 else
84 minf0=F0MinMax(1);
85 maxf0=F0MinMax(2);
86 end
87 if nargin<2
88 error('Sampling rate must be supplied!')
89 end
90 segmentduration=frame_length;
91
92 %------------------- pre-processing input signal -------------------------
93 Y=Y-mean(Y); % remove DC component
94 Y=Y/max(abs(Y)); %normalization
95 total_len=length(Y);
96 %------------------ specify some algorithm-specific thresholds -------------------------
97 interpolation_depth=0.5; % for FFT length
98 %--------------- derived thresholds specific to the algorithm -------------------------------
99 maxlogf=log2(maxf0/2);
100 minlogf=log2(minf0/2); % the search region to compute SHR is as low as 0.5 minf0.
101 N=floor(ceiling/minf0); % maximum number harmonics
102 m=mod(N,2);
103 N=N-m;
104 N=N*4; %In fact, in most cases we don't need to multiply N by 4 and get equally good results yet much faster.
105 % derive how many frames we have based on segment length and timestep.
106 segmentlen=round(segmentduration*(Fs/1000));
107 inc=round(timestep*(Fs/1000));
108 nf = fix((total_len-segmentlen+inc)/inc);
109 n=(1:nf);
110 f0_time=((n-1)*timestep+segmentduration/2)'; % anchor time for each frame, the middle point
111 %f0_time=((n-1)*timestep)'; % anchor time for each frame, starting from zero
112 %------------------ determine FFT length ---------------------
113 fftlen=1;
114 while (fftlen < segmentlen * (1 +interpolation_depth))
115 fftlen =fftlen* 2;
116 end
117 %----------------- derive linear and log frequency scale ----------------
118 frequency=Fs*(1:fftlen/2)/fftlen; % we ignore frequency 0 here since we need to do log transformation later and won't use it anyway.
119 limit=find(frequency>=ceiling);
120 limit=limit(1); % only the first is useful
121 frequency=frequency(1:limit);
122 logf=log2(frequency);
123 %% clear some variables to save memory
124 clear frequency;
125 min_bin=logf(end)-logf(end-1); % the minimum distance between two points after interpolation
126 shift=log2(N); % shift distance
127 shift_units=round(shift/min_bin); %the number of unit on the log x-axis
128 i=(2:N);
129 % ------------- the followings are universal for all the frames ---------------%%
130 startpos=shift_units+1-round(log2(i)/min_bin); % find out all the start position of each shift
131 index=find(startpos<1); % find out those positions that are less than 1
132 startpos(index)=1; % set them to 1 since the array index starts from 1 in matlab
133 interp_logf=logf(1):min_bin:logf(end);
134 interp_len=length(interp_logf);% new length of the amplitude spectrum after interpolation
135 totallen=shift_units+interp_len;
136 endpos=startpos+interp_len-1; %% note that : totallen=shift_units+interp_len;
137 index=find(endpos>totallen);
138 endpos(index)=totallen; % make sure all the end positions not greater than the totoal length of the shift spectrum
139
140 newfre=2.^(interp_logf); % the linear Hz scale derived from the interpolated log scale
141 upperbound=find(interp_logf>=maxlogf); % find out the index of upper bound of search region on the log frequency scale.
142 upperbound=upperbound(1);% only the first element is useful
143 lowerbound=find(interp_logf>=minlogf); % find out the index of lower bound of search region on the log frequency scale.
144 lowerbound=lowerbound(1);
145
146 %----------------- segmentation of speech ------------------------------
147 curpos=round(f0_time/1000*Fs); % position for each frame in terms of index, not time
148 frames=toframes(Y,curpos,segmentlen,'hamm');
149 [nf framelen]=size(frames);
150 clear Y;
151 %----------------- initialize vectors for f0 time, f0 values, and SHR
152 f0_value=zeros(nf,1);
153 SHR=zeros(nf,1);
154 f0_time=f0_time(1:nf);
155 f0_candidates=zeros(nf,2);
156 %----------------- voicing determination ----------------------------
157 if (CHECK_VOICING)
158 NoiseFloor=sum(frames(1,:).^2);
159 voicing=vda(frames,segmentduration/1000,NoiseFloor);
160 else
161 voicing=ones(nf,1);
162 end
163 %------------------- the main loop -----------------------
164 curf0=0;
165 cur_SHR=0;
166 cur_cand1=0;
167 cur_cand2=0;
168 for n=1:nf
169 segment=frames(n,:);
170 curtime=f0_time(n);
171 if voicing(n)==0
172 curf0=0;
173 cur_SHR=0;
174 else
175 [log_spectrum]=GetLogSpectrum(segment,fftlen,limit,logf,interp_logf);
176 [peak_index,cur_SHR,shshift,all_peak_indices]=ComputeSHR(log_spectrum,min_bin,startpos,endpos,lowerbound,upperbound,N,shift_units,SHR_Threshold);
177 if (peak_index==-1) % -1 indicates a possibly unvoiced frame, if CHECK_VOICING, set f0 to 0, otherwise uses previous value
178 if (CHECK_VOICING)
179 curf0=0;
180 cur_cand1=0;
181 cur_cand2=0;
182 end
183
184 else
185 curf0=newfre(peak_index)*2;
186 if (curf0>maxf0)
187 curf0=curf0/2;
188 end
189 if (length(all_peak_indices)==1)
190 cur_cand1=0;
191 cur_cand2=newfre(all_peak_indices(1))*2;
192 else
193 cur_cand1=newfre(all_peak_indices(1))*2;
194 cur_cand2=newfre(all_peak_indices(2))*2;
195 end
196 if (cur_cand1>maxf0)
197 cur_cand1=cur_cand1/2;
198 end
199 if (cur_cand2>maxf0)
200 cur_cand2=cur_cand2/2;
201 end
202 if (CHECK_VOICING)
203 voicing(n)=postvda(segment,curf0,Fs);
204 if (voicing(n)==0)
205 curf0=0;
206 end
207 end
208 end
209 end
210 f0_value(n)=curf0;
211 SHR(n)=cur_SHR;
212 f0_candidates(n,1)=cur_cand1;
213 f0_candidates(n,2)=cur_cand2;
214 DEBUG=0;
215 if DEBUG
216 figure(9)
217 %subplot(5,1,1),plot(segment,'*')
218 %title('windowed waveform segment')
219 subplot(2,2,1),plot(interp_logf,log_spectrum,'k*')
220 title('(a)')
221 grid
222 %('spectrum on log frequency scale')
223 %grid
224 shsodd=sum(shshift(1:2:N-1,:),1);
225 shseven=sum(shshift(2:2:N,:),1);
226 difference=shseven-shsodd;
227 subplot(2,2,2),plot(interp_logf,shseven,'k*')
228 title('(b)')
229 %title('even')
230 grid
231 subplot(2,2,3),plot(interp_logf,shsodd,'k*')
232 title('(c)')
233 %title('odd')
234 grid
235 subplot(2,2,4), plot(interp_logf,difference,'k*')
236 title('(d)')
237 %title('difference (even-odd)')
238 grid
239 curtime
240 curf0
241 cur_SHR
242 pause
243 end
244 end
245 %-------------- post-processing -------------------------------
246 if (med_smooth > 0)
247 f0_value=medsmooth(f0_value,med_smooth);
248 end
249 %f0=linsmooth(f0,5); % this is really optional.
250
251 %*****************************************************************************************
252 %-------------- do FFT and get log spectrum ---------------------------------
253 %*****************************************************************************************
254 function [interp_amplitude]=GetLogSpectrum(segment,fftlen,limit,logf,interp_logf)
255 Spectra=fft(segment,fftlen);
256 amplitude = abs(Spectra(1:fftlen/2+1)); % fftlen is always even here. Note: change fftlen/2 to fftlen/2+1. bug fixed due to Herbert Griebel
257 amplitude=amplitude(2:limit+1); % ignore the zero frequency component
258 %amplitude=log10(amplitude+1);
259 interp_amplitude=interp1(logf,amplitude,interp_logf,'linear');
260 interp_amplitude=interp_amplitude-min(interp_amplitude);
261 %*****************************************************************************************
262 %-------------- compute subharmonic-to-harmonic ratio ---------------------------------
263 %*****************************************************************************************
264 function [peak_index,SHR,shshift,index]=ComputeSHR(log_spectrum,min_bin,startpos,endpos,lowerbound,upperbound,N,shift_units,SHR_Threshold)
265 % computeshr: compute subharmonic-to-harmonic ratio for a short-term signal
266 len_spectrum=length(log_spectrum);
267 totallen=shift_units+len_spectrum;
268 shshift=zeros(N,totallen); %initialize the subharmonic shift matrix; each row corresponds to a shift version
269 shshift(1,(totallen-len_spectrum+1):totallen)=log_spectrum; % place the spectrum at the right end of the first row
270 % note that here startpos and endpos has N-1 rows, so we start from 2
271 % the first row in shshift is the original log spectrum
272 for i=2:N
273 shshift(i,startpos(i-1):endpos(i-1))=log_spectrum(1:endpos(i-1)-startpos(i-1)+1); % store each shifted sequence
274 end
275 shshift=shshift(:,shift_units+1:totallen); % we don't need the stuff smaller than shift_units
276 shsodd=sum(shshift(1:2:N-1,:),1);
277 shseven=sum(shshift(2:2:N,:),1);
278 difference=shseven-shsodd;
279 % peak picking process
280 SHR=0;
281 [mag,index]=twomax(difference,lowerbound,upperbound,min_bin); % only find two maxima
282 % first mag is always the maximum, the second, if there is, is the second max
283 NumPitchCandidates=length(mag);
284 if (NumPitchCandidates == 1) % this is possible, mainly due to we put a constraint on search region, i.e., f0 range
285 if (mag <=0) % this must be an unvoiced frame
286 peak_index=-1;
287 return
288 end
289 peak_index=index;
290 SHR=0;
291 else
292 SHR=(mag(1)-mag(2))/(mag(1)+mag(2));
293 if (SHR<=SHR_Threshold)
294 peak_index=index(2); % subharmonic is weak, so favor the harmonic
295 else
296 peak_index=index(1); % subharmonic is strong, so favor the subharmonic as F0
297 end
298 end
299 %%*****************************************************************************************
300 %****************** this function only finds two maximum peaks ************************
301 function [mag,index]=twomax(x,lowerbound,upperbound,unitlen)
302 %In descending order, the magnitude and index are returned in [mag,index], respectively
303 lenx=length(x);
304 halfoct=round(1/unitlen/2); % compute the number of units of half octave. log2(2)=1; 1/unitlen
305 [mag,index]=max(x(lowerbound:upperbound));%find the maximum value
306 if (mag<=0)
307 % error('max is smaller than zero!') % return it!
308 return
309 end
310 index=index+lowerbound-1;
311 harmonics=2;
312 LIMIT=0.0625; % 1/8 octave
313 startpos=index+round(log2(harmonics-LIMIT)/unitlen);
314 if (startpos<=min(lenx,upperbound))
315 endpos=index+round(log2(harmonics+LIMIT)/unitlen); % for example, 100hz-200hz is one octave, 200hz-250hz is 1/4octave
316 if (endpos> min(lenx,upperbound))
317 endpos=min(lenx,upperbound);
318 end
319 [mag1,index1]=max(x(startpos:endpos));%find the maximum value at right side of last maximum
320 if (mag1>0)
321 index1=index1+startpos-1;
322 mag=[mag;mag1];
323 index=[index;index1];
324 end
325 end
326 %*****************************************************************************************
327 %%----------------------------------------------------------------------------------------
328 %%-----------------------------------voicing determination -------------------------------
329 function voice=vda(x,segmentdur,noisefloor,minzcr)
330 %voice=vda(x) determine whether the segment is voiced, unvoiced or silence
331 %this VDA is independent from the PDA process, and does not take advantage of the info derived from PDA
332 %thus, it requires more computation load.
333 if nargin<4
334 %minzcr=2500; %unit: hertz
335 minzcr=3000;
336 end
337 if nargin<3
338 noisefloor=0.01;
339 end
340 [nf, len]=size(x);
341 voice=ones(nf,1);
342 engergy=sum(x.^2,2);
343 index=find(engergy<=noisefloor*3);
344 voice(index)=0;
345
346 %*****************************************************************************************
347 %% --------------------------------- determine the energy threshold for silence-------------------------
348 function thr=ethreshold(frames)
349 %%%%% use Rabiner and Sambur (1975) method
350 [nf,len]=size(frames);
351 lastpoint=1;
352 emax=0;
353 emin=0;
354 e=sum(frames.^2,2);
355 emax=max(e);
356 emin=min(e);
357 I1=0.03*(emax-emin)+emin;
358 I2=4*emin;
359 thr=25*min(I1,I2);
360
361 %*****************************************************************************************
362 %% ------------------- split signal into frames ---------------
363 function frames=toframes(input,curpos,segmentlen,wintype)
364 len=length(input);
365 numFrames=length(curpos);
366 frames=zeros(numFrames,segmentlen);
367 start=curpos-round(segmentlen/2);
368 offset=(0:segmentlen-1);
369 index_start=find(start<1); % find out those frames beyond the first point
370 start(index_start)=1; % for those, just use the first frame
371 endpos=start+segmentlen-1;
372 index=find(endpos>len);
373 endpos(index)=len; % duplicate the last several frames if window is over the limit.
374 start(index)=len+1-segmentlen;
375 frames(:)=input(start(:,ones(1,segmentlen))+offset(ones(numFrames,1),:));
376 [nf, len]=size(frames);
377 win=window(segmentlen,wintype);
378 frames = frames .* win(ones(nf,1),:);
379 %*****************************************************************************************
380 %-------------- post voicing checking ---------------------------------------------
381 function voicing=postvda(segment, curf0,Fs,r_threshold)
382 %%% check voicing again using estimated F0, which follows Hermes, SHS algorithm, JASA, 1988
383 if nargin<4
384 r_threshold=0.2;
385 end
386 estimated_period=1/curf0;
387 mid_point=round(length(segment)/2);
388 num_points=round(estimated_period*Fs); % number of points in each period
389 start_point=mid_point-num_points;
390 end_point=mid_point+num_points;
391 if (start_point <1)
392 start_point=1;
393 mid_point=start_point+num_points;
394 if (mid_point>length(segment)) % this is unreasonable, set f0 to zero
395 voicing=0;
396 return;
397 end
398 end
399 segment1=segment(start_point:mid_point);
400 if (end_point>length(segment))
401 end_point=length(segment);
402 mid_point=end_point-num_points;
403 if (mid_point<1) % this is unreasonable, set f0 to zero
404 voicing=0;
405 return;
406 end
407 end
408 segment2=segment(mid_point:end_point);
409 len=min(length(segment1),length(segment2));
410 r=corrcoef(segment1(1:len),segment2(1:len));
411 r1=r(1,2);
412 if (r1<r_threshold) % correlation threshold
413 voicing=0;
414 else
415 voicing=1;
416 end
417 USE_ZCR=1;
418 if(USE_ZCR & voicing)
419 zcr1=zcr(segment1,estimated_period);
420 zcr2=zcr(segment2,estimated_period);
421 %minzcr=2500;
422 minzcr=3500;
423 if (zcr1<minzcr | zcr2<minzcr)
424 voicing=1;
425 else
426 voicing=0;
427 end
428 end
429 %%*****************************************************************************************
430 %--------------------- Compute zero-crossing rate -------------------------------------------
431 function zcr=zcr(x,dur)
432 % function zcr=zcr(x,dur) : compute zero-crossing rate
433 % x: input data
434 % x: duration of the input data
435 [nf,len]=size(x);
436 zcr=sum(0.5*abs(sign(x(:,2:len))-sign(x(:,1:len-1))))/dur;
437 %%*************************************************************************************
438 %--------------------- Window function -------------------------------------------
439 function w = window(N,wt,beta)
440 %
441 % w = window(N,wt)
442 %
443 % generate a window function
444 %
445 % N = length of desired window
446 % wt = window type desired
447 % 'rect' = rectangular 'tria' = triangular (Bartlett)
448 % 'hann' = Hanning 'hamm' = Hamming
449 % 'blac' = Blackman
450 % 'kais' = Kaiser
451 %
452 % w = row vector containing samples of the desired window
453 % beta : used in Kaiser window
454
455 nn = N-1;
456 n=0:nn;
457 pn = 2*pi*(0:nn)/nn;
458 if wt(1,1:4) == 'rect',
459 w = ones(1,N);
460 elseif wt(1,1:4) == 'tria',
461 m = nn/2;
462 w = (0:m)/m;
463 w = [w w(ceil(m):-1:1)];
464 elseif wt(1,1:4) == 'hann',
465 w = 0.5*(1 - cos(pn));
466 elseif wt(1,1:4) == 'hamm',
467 w = .54 - .46*cos(pn);
468 elseif wt(1,1:4) == 'blac',
469 w = .42 -.5*cos(pn) + .08*cos(2*pn);
470 elseif wt(1,1:4) == 'kais',
471 if nargin<3
472 error('you need provide beta!')
473 end
474 w =bessel1(beta*sqrt(1-((n-N/2)/(N/2)).^2))./bessel1(beta);
475 else
476 disp('Incorrect Window type requested')
477 end