annotate Code/Descriptors/Matlab/MPEG7/FromWeb/VoiceSauce/shrp.m @ 4:92ca03a8fa99 tip

Update to ICASSP 2013 benchmark
author Dawn Black
date Wed, 13 Feb 2013 11:02:39 +0000
parents
children
rev   line source
Dawn@4 1 function [f0_time,f0_value,SHR,f0_candidates]=shrp(Y,Fs,F0MinMax,frame_length,timestep,SHR_Threshold,ceiling,med_smooth,CHECK_VOICING)
Dawn@4 2 % SHRP - a pitch determination algorithm based on Subharmonic-to-Harmonic Ratio (SHR)
Dawn@4 3 % [f0_time,f0_value,SHR,f0_candidates]=shrp(Y,Fs[,F0MinMax,frame_length,TimeStep,SHR_Threshold,Ceiling,med_smooth,CHECK_VOICING])
Dawn@4 4 %
Dawn@4 5 % Input parameters (There are 9):
Dawn@4 6 %
Dawn@4 7 % Y: Input data
Dawn@4 8 % Fs: Sampling frequency (e.g., 16000 Hz)
Dawn@4 9 % F0MinMax: 2-d array specifies the F0 range. [minf0 maxf0], default: [50 550]
Dawn@4 10 % Quick solutions:
Dawn@4 11 % For male speech: [50 250]
Dawn@4 12 % For female speech: [120 400]
Dawn@4 13 % frame_length: length of each frame in millisecond (default: 40 ms)
Dawn@4 14 % TimeStep: Interval for updating short-term analysis in millisecond (default: 10 ms)
Dawn@4 15 % SHR_Threshold: Subharmonic-to-harmonic ratio threshold in the range of [0,1] (default: 0.4).
Dawn@4 16 % If the estimated SHR is greater than the threshold, the subharmonic is regarded as F0 candidate,
Dawn@4 17 % Otherwise, the harmonic is favored.
Dawn@4 18 % Ceiling: Upper bound of the frequencies that are used for estimating pitch. (default: 1250 Hz)
Dawn@4 19 % med_smooth: the order of the median smoothing (default: 0 - no smoothing);
Dawn@4 20 % CHECK_VOICING: check voicing. Current voicing determination algorithm is kind of crude.
Dawn@4 21 % 0: no voicing checking (default)
Dawn@4 22 % 1: voicing checking
Dawn@4 23 % Output parameters:
Dawn@4 24 %
Dawn@4 25 % f0_time: an array stores the times for the F0 points
Dawn@4 26 % f0_value: an array stores F0 values
Dawn@4 27 % SHR: an array stores subharmonic-to-harmonic ratio for each frame
Dawn@4 28 % f0_candidates: a matrix stores the f0 candidates for each frames, currently two f0 values generated for each frame.
Dawn@4 29 % Each row (a frame) contains two values in increasing order, i.e., [low_f0 higher_f0].
Dawn@4 30 % For SHR=0, the first f0 is 0. The purpose of this is that when you want to test different SHR
Dawn@4 31 % thresholds, you don't need to re-run the whole algorithm. You can choose to select the lower or higher
Dawn@4 32 % value based on the shr value of this frame.
Dawn@4 33 %
Dawn@4 34 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Dawn@4 35 % Permission to use, copy, modify, and distribute this software without fee is hereby granted
Dawn@4 36 % FOR RESEARCH PURPOSES only, provided that this copyright notice appears in all copies
Dawn@4 37 % and in all supporting documentation.
Dawn@4 38 %
Dawn@4 39 % This program is distributed in the hope that it will be useful,
Dawn@4 40 % but WITHOUT ANY WARRANTY; without even the implied warranty of
Dawn@4 41 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
Dawn@4 42 %
Dawn@4 43 % For details of the algorithm, please see
Dawn@4 44 % Sun, X.,"Pitch determination and voice quality analysis using subharmonic-to-harmonic ratio" To appear in the Proc. of ICASSP2002, Orlando, Florida, May 13 -17, 2002.
Dawn@4 45 % For update information, please check http://mel.speech.nwu.edu/sunxj/pda.htm.
Dawn@4 46 %
Dawn@4 47 % Copyright (c) 2001 Xuejing Sun
Dawn@4 48 % Department of Communication Sciences and Disorders
Dawn@4 49 % Northwestern University, USA
Dawn@4 50 % sunxj@northwestern.edu
Dawn@4 51 %
Dawn@4 52 % Update history:
Dawn@4 53 % Added "f0_candidates" as a return value, Dec. 21, 2001
Dawn@4 54 % Changed default median smoothing order from 5 to 0, Jan. 9, 2002
Dawn@4 55 % Modified the GetLogSpectrum function, bug fixed due to Herbert Griebel. Jan. 15, 2002
Dawn@4 56 % Several minor changes. Jan. 15,2002.
Dawn@4 57 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Dawn@4 58
Dawn@4 59 %t0 = clock;
Dawn@4 60 %------------------ Get input arguments values and set default values -------------------------
Dawn@4 61 if nargin<9
Dawn@4 62 CHECK_VOICING=0;
Dawn@4 63 end
Dawn@4 64 if nargin<8
Dawn@4 65 med_smooth=0;
Dawn@4 66 end
Dawn@4 67 if nargin<7
Dawn@4 68 ceiling=1250;
Dawn@4 69 end
Dawn@4 70 if nargin<6
Dawn@4 71 SHR_Threshold=0.4; % subharmonic to harmonic ratio threshold
Dawn@4 72 end
Dawn@4 73 if nargin<5
Dawn@4 74 timestep=10;
Dawn@4 75 %timestep=6.4;
Dawn@4 76 end
Dawn@4 77 if nargin<4
Dawn@4 78 frame_length=40; % default 40 ms
Dawn@4 79 end
Dawn@4 80 if nargin<3
Dawn@4 81 minf0=50;
Dawn@4 82 maxf0=500;
Dawn@4 83 else
Dawn@4 84 minf0=F0MinMax(1);
Dawn@4 85 maxf0=F0MinMax(2);
Dawn@4 86 end
Dawn@4 87 if nargin<2
Dawn@4 88 error('Sampling rate must be supplied!')
Dawn@4 89 end
Dawn@4 90 segmentduration=frame_length;
Dawn@4 91
Dawn@4 92 %------------------- pre-processing input signal -------------------------
Dawn@4 93 Y=Y-mean(Y); % remove DC component
Dawn@4 94 Y=Y/max(abs(Y)); %normalization
Dawn@4 95 total_len=length(Y);
Dawn@4 96 %------------------ specify some algorithm-specific thresholds -------------------------
Dawn@4 97 interpolation_depth=0.5; % for FFT length
Dawn@4 98 %--------------- derived thresholds specific to the algorithm -------------------------------
Dawn@4 99 maxlogf=log2(maxf0/2);
Dawn@4 100 minlogf=log2(minf0/2); % the search region to compute SHR is as low as 0.5 minf0.
Dawn@4 101 N=floor(ceiling/minf0); % maximum number harmonics
Dawn@4 102 m=mod(N,2);
Dawn@4 103 N=N-m;
Dawn@4 104 N=N*4; %In fact, in most cases we don't need to multiply N by 4 and get equally good results yet much faster.
Dawn@4 105 % derive how many frames we have based on segment length and timestep.
Dawn@4 106 segmentlen=round(segmentduration*(Fs/1000));
Dawn@4 107 inc=round(timestep*(Fs/1000));
Dawn@4 108 nf = fix((total_len-segmentlen+inc)/inc);
Dawn@4 109 n=(1:nf);
Dawn@4 110 f0_time=((n-1)*timestep+segmentduration/2)'; % anchor time for each frame, the middle point
Dawn@4 111 %f0_time=((n-1)*timestep)'; % anchor time for each frame, starting from zero
Dawn@4 112 %------------------ determine FFT length ---------------------
Dawn@4 113 fftlen=1;
Dawn@4 114 while (fftlen < segmentlen * (1 +interpolation_depth))
Dawn@4 115 fftlen =fftlen* 2;
Dawn@4 116 end
Dawn@4 117 %----------------- derive linear and log frequency scale ----------------
Dawn@4 118 frequency=Fs*(1:fftlen/2)/fftlen; % we ignore frequency 0 here since we need to do log transformation later and won't use it anyway.
Dawn@4 119 limit=find(frequency>=ceiling);
Dawn@4 120 limit=limit(1); % only the first is useful
Dawn@4 121 frequency=frequency(1:limit);
Dawn@4 122 logf=log2(frequency);
Dawn@4 123 %% clear some variables to save memory
Dawn@4 124 clear frequency;
Dawn@4 125 min_bin=logf(end)-logf(end-1); % the minimum distance between two points after interpolation
Dawn@4 126 shift=log2(N); % shift distance
Dawn@4 127 shift_units=round(shift/min_bin); %the number of unit on the log x-axis
Dawn@4 128 i=(2:N);
Dawn@4 129 % ------------- the followings are universal for all the frames ---------------%%
Dawn@4 130 startpos=shift_units+1-round(log2(i)/min_bin); % find out all the start position of each shift
Dawn@4 131 index=find(startpos<1); % find out those positions that are less than 1
Dawn@4 132 startpos(index)=1; % set them to 1 since the array index starts from 1 in matlab
Dawn@4 133 interp_logf=logf(1):min_bin:logf(end);
Dawn@4 134 interp_len=length(interp_logf);% new length of the amplitude spectrum after interpolation
Dawn@4 135 totallen=shift_units+interp_len;
Dawn@4 136 endpos=startpos+interp_len-1; %% note that : totallen=shift_units+interp_len;
Dawn@4 137 index=find(endpos>totallen);
Dawn@4 138 endpos(index)=totallen; % make sure all the end positions not greater than the totoal length of the shift spectrum
Dawn@4 139
Dawn@4 140 newfre=2.^(interp_logf); % the linear Hz scale derived from the interpolated log scale
Dawn@4 141 upperbound=find(interp_logf>=maxlogf); % find out the index of upper bound of search region on the log frequency scale.
Dawn@4 142 upperbound=upperbound(1);% only the first element is useful
Dawn@4 143 lowerbound=find(interp_logf>=minlogf); % find out the index of lower bound of search region on the log frequency scale.
Dawn@4 144 lowerbound=lowerbound(1);
Dawn@4 145
Dawn@4 146 %----------------- segmentation of speech ------------------------------
Dawn@4 147 curpos=round(f0_time/1000*Fs); % position for each frame in terms of index, not time
Dawn@4 148 frames=toframes(Y,curpos,segmentlen,'hamm');
Dawn@4 149 [nf framelen]=size(frames);
Dawn@4 150 clear Y;
Dawn@4 151 %----------------- initialize vectors for f0 time, f0 values, and SHR
Dawn@4 152 f0_value=zeros(nf,1);
Dawn@4 153 SHR=zeros(nf,1);
Dawn@4 154 f0_time=f0_time(1:nf);
Dawn@4 155 f0_candidates=zeros(nf,2);
Dawn@4 156 %----------------- voicing determination ----------------------------
Dawn@4 157 if (CHECK_VOICING)
Dawn@4 158 NoiseFloor=sum(frames(1,:).^2);
Dawn@4 159 voicing=vda(frames,segmentduration/1000,NoiseFloor);
Dawn@4 160 else
Dawn@4 161 voicing=ones(nf,1);
Dawn@4 162 end
Dawn@4 163 %------------------- the main loop -----------------------
Dawn@4 164 curf0=0;
Dawn@4 165 cur_SHR=0;
Dawn@4 166 cur_cand1=0;
Dawn@4 167 cur_cand2=0;
Dawn@4 168 for n=1:nf
Dawn@4 169 segment=frames(n,:);
Dawn@4 170 curtime=f0_time(n);
Dawn@4 171 if voicing(n)==0
Dawn@4 172 curf0=0;
Dawn@4 173 cur_SHR=0;
Dawn@4 174 else
Dawn@4 175 [log_spectrum]=GetLogSpectrum(segment,fftlen,limit,logf,interp_logf);
Dawn@4 176 [peak_index,cur_SHR,shshift,all_peak_indices]=ComputeSHR(log_spectrum,min_bin,startpos,endpos,lowerbound,upperbound,N,shift_units,SHR_Threshold);
Dawn@4 177 if (peak_index==-1) % -1 indicates a possibly unvoiced frame, if CHECK_VOICING, set f0 to 0, otherwise uses previous value
Dawn@4 178 if (CHECK_VOICING)
Dawn@4 179 curf0=0;
Dawn@4 180 cur_cand1=0;
Dawn@4 181 cur_cand2=0;
Dawn@4 182 end
Dawn@4 183
Dawn@4 184 else
Dawn@4 185 curf0=newfre(peak_index)*2;
Dawn@4 186 if (curf0>maxf0)
Dawn@4 187 curf0=curf0/2;
Dawn@4 188 end
Dawn@4 189 if (length(all_peak_indices)==1)
Dawn@4 190 cur_cand1=0;
Dawn@4 191 cur_cand2=newfre(all_peak_indices(1))*2;
Dawn@4 192 else
Dawn@4 193 cur_cand1=newfre(all_peak_indices(1))*2;
Dawn@4 194 cur_cand2=newfre(all_peak_indices(2))*2;
Dawn@4 195 end
Dawn@4 196 if (cur_cand1>maxf0)
Dawn@4 197 cur_cand1=cur_cand1/2;
Dawn@4 198 end
Dawn@4 199 if (cur_cand2>maxf0)
Dawn@4 200 cur_cand2=cur_cand2/2;
Dawn@4 201 end
Dawn@4 202 if (CHECK_VOICING)
Dawn@4 203 voicing(n)=postvda(segment,curf0,Fs);
Dawn@4 204 if (voicing(n)==0)
Dawn@4 205 curf0=0;
Dawn@4 206 end
Dawn@4 207 end
Dawn@4 208 end
Dawn@4 209 end
Dawn@4 210 f0_value(n)=curf0;
Dawn@4 211 SHR(n)=cur_SHR;
Dawn@4 212 f0_candidates(n,1)=cur_cand1;
Dawn@4 213 f0_candidates(n,2)=cur_cand2;
Dawn@4 214 DEBUG=0;
Dawn@4 215 if DEBUG
Dawn@4 216 figure(9)
Dawn@4 217 %subplot(5,1,1),plot(segment,'*')
Dawn@4 218 %title('windowed waveform segment')
Dawn@4 219 subplot(2,2,1),plot(interp_logf,log_spectrum,'k*')
Dawn@4 220 title('(a)')
Dawn@4 221 grid
Dawn@4 222 %('spectrum on log frequency scale')
Dawn@4 223 %grid
Dawn@4 224 shsodd=sum(shshift(1:2:N-1,:),1);
Dawn@4 225 shseven=sum(shshift(2:2:N,:),1);
Dawn@4 226 difference=shseven-shsodd;
Dawn@4 227 subplot(2,2,2),plot(interp_logf,shseven,'k*')
Dawn@4 228 title('(b)')
Dawn@4 229 %title('even')
Dawn@4 230 grid
Dawn@4 231 subplot(2,2,3),plot(interp_logf,shsodd,'k*')
Dawn@4 232 title('(c)')
Dawn@4 233 %title('odd')
Dawn@4 234 grid
Dawn@4 235 subplot(2,2,4), plot(interp_logf,difference,'k*')
Dawn@4 236 title('(d)')
Dawn@4 237 %title('difference (even-odd)')
Dawn@4 238 grid
Dawn@4 239 curtime
Dawn@4 240 curf0
Dawn@4 241 cur_SHR
Dawn@4 242 pause
Dawn@4 243 end
Dawn@4 244 end
Dawn@4 245 %-------------- post-processing -------------------------------
Dawn@4 246 if (med_smooth > 0)
Dawn@4 247 f0_value=medsmooth(f0_value,med_smooth);
Dawn@4 248 end
Dawn@4 249 %f0=linsmooth(f0,5); % this is really optional.
Dawn@4 250
Dawn@4 251 %*****************************************************************************************
Dawn@4 252 %-------------- do FFT and get log spectrum ---------------------------------
Dawn@4 253 %*****************************************************************************************
Dawn@4 254 function [interp_amplitude]=GetLogSpectrum(segment,fftlen,limit,logf,interp_logf)
Dawn@4 255 Spectra=fft(segment,fftlen);
Dawn@4 256 amplitude = abs(Spectra(1:fftlen/2+1)); % fftlen is always even here. Note: change fftlen/2 to fftlen/2+1. bug fixed due to Herbert Griebel
Dawn@4 257 amplitude=amplitude(2:limit+1); % ignore the zero frequency component
Dawn@4 258 %amplitude=log10(amplitude+1);
Dawn@4 259 interp_amplitude=interp1(logf,amplitude,interp_logf,'linear');
Dawn@4 260 interp_amplitude=interp_amplitude-min(interp_amplitude);
Dawn@4 261 %*****************************************************************************************
Dawn@4 262 %-------------- compute subharmonic-to-harmonic ratio ---------------------------------
Dawn@4 263 %*****************************************************************************************
Dawn@4 264 function [peak_index,SHR,shshift,index]=ComputeSHR(log_spectrum,min_bin,startpos,endpos,lowerbound,upperbound,N,shift_units,SHR_Threshold)
Dawn@4 265 % computeshr: compute subharmonic-to-harmonic ratio for a short-term signal
Dawn@4 266 len_spectrum=length(log_spectrum);
Dawn@4 267 totallen=shift_units+len_spectrum;
Dawn@4 268 shshift=zeros(N,totallen); %initialize the subharmonic shift matrix; each row corresponds to a shift version
Dawn@4 269 shshift(1,(totallen-len_spectrum+1):totallen)=log_spectrum; % place the spectrum at the right end of the first row
Dawn@4 270 % note that here startpos and endpos has N-1 rows, so we start from 2
Dawn@4 271 % the first row in shshift is the original log spectrum
Dawn@4 272 for i=2:N
Dawn@4 273 shshift(i,startpos(i-1):endpos(i-1))=log_spectrum(1:endpos(i-1)-startpos(i-1)+1); % store each shifted sequence
Dawn@4 274 end
Dawn@4 275 shshift=shshift(:,shift_units+1:totallen); % we don't need the stuff smaller than shift_units
Dawn@4 276 shsodd=sum(shshift(1:2:N-1,:),1);
Dawn@4 277 shseven=sum(shshift(2:2:N,:),1);
Dawn@4 278 difference=shseven-shsodd;
Dawn@4 279 % peak picking process
Dawn@4 280 SHR=0;
Dawn@4 281 [mag,index]=twomax(difference,lowerbound,upperbound,min_bin); % only find two maxima
Dawn@4 282 % first mag is always the maximum, the second, if there is, is the second max
Dawn@4 283 NumPitchCandidates=length(mag);
Dawn@4 284 if (NumPitchCandidates == 1) % this is possible, mainly due to we put a constraint on search region, i.e., f0 range
Dawn@4 285 if (mag <=0) % this must be an unvoiced frame
Dawn@4 286 peak_index=-1;
Dawn@4 287 return
Dawn@4 288 end
Dawn@4 289 peak_index=index;
Dawn@4 290 SHR=0;
Dawn@4 291 else
Dawn@4 292 SHR=(mag(1)-mag(2))/(mag(1)+mag(2));
Dawn@4 293 if (SHR<=SHR_Threshold)
Dawn@4 294 peak_index=index(2); % subharmonic is weak, so favor the harmonic
Dawn@4 295 else
Dawn@4 296 peak_index=index(1); % subharmonic is strong, so favor the subharmonic as F0
Dawn@4 297 end
Dawn@4 298 end
Dawn@4 299 %%*****************************************************************************************
Dawn@4 300 %****************** this function only finds two maximum peaks ************************
Dawn@4 301 function [mag,index]=twomax(x,lowerbound,upperbound,unitlen)
Dawn@4 302 %In descending order, the magnitude and index are returned in [mag,index], respectively
Dawn@4 303 lenx=length(x);
Dawn@4 304 halfoct=round(1/unitlen/2); % compute the number of units of half octave. log2(2)=1; 1/unitlen
Dawn@4 305 [mag,index]=max(x(lowerbound:upperbound));%find the maximum value
Dawn@4 306 if (mag<=0)
Dawn@4 307 % error('max is smaller than zero!') % return it!
Dawn@4 308 return
Dawn@4 309 end
Dawn@4 310 index=index+lowerbound-1;
Dawn@4 311 harmonics=2;
Dawn@4 312 LIMIT=0.0625; % 1/8 octave
Dawn@4 313 startpos=index+round(log2(harmonics-LIMIT)/unitlen);
Dawn@4 314 if (startpos<=min(lenx,upperbound))
Dawn@4 315 endpos=index+round(log2(harmonics+LIMIT)/unitlen); % for example, 100hz-200hz is one octave, 200hz-250hz is 1/4octave
Dawn@4 316 if (endpos> min(lenx,upperbound))
Dawn@4 317 endpos=min(lenx,upperbound);
Dawn@4 318 end
Dawn@4 319 [mag1,index1]=max(x(startpos:endpos));%find the maximum value at right side of last maximum
Dawn@4 320 if (mag1>0)
Dawn@4 321 index1=index1+startpos-1;
Dawn@4 322 mag=[mag;mag1];
Dawn@4 323 index=[index;index1];
Dawn@4 324 end
Dawn@4 325 end
Dawn@4 326 %*****************************************************************************************
Dawn@4 327 %%----------------------------------------------------------------------------------------
Dawn@4 328 %%-----------------------------------voicing determination -------------------------------
Dawn@4 329 function voice=vda(x,segmentdur,noisefloor,minzcr)
Dawn@4 330 %voice=vda(x) determine whether the segment is voiced, unvoiced or silence
Dawn@4 331 %this VDA is independent from the PDA process, and does not take advantage of the info derived from PDA
Dawn@4 332 %thus, it requires more computation load.
Dawn@4 333 if nargin<4
Dawn@4 334 %minzcr=2500; %unit: hertz
Dawn@4 335 minzcr=3000;
Dawn@4 336 end
Dawn@4 337 if nargin<3
Dawn@4 338 noisefloor=0.01;
Dawn@4 339 end
Dawn@4 340 [nf, len]=size(x);
Dawn@4 341 voice=ones(nf,1);
Dawn@4 342 engergy=sum(x.^2,2);
Dawn@4 343 index=find(engergy<=noisefloor*3);
Dawn@4 344 voice(index)=0;
Dawn@4 345
Dawn@4 346 %*****************************************************************************************
Dawn@4 347 %% --------------------------------- determine the energy threshold for silence-------------------------
Dawn@4 348 function thr=ethreshold(frames)
Dawn@4 349 %%%%% use Rabiner and Sambur (1975) method
Dawn@4 350 [nf,len]=size(frames);
Dawn@4 351 lastpoint=1;
Dawn@4 352 emax=0;
Dawn@4 353 emin=0;
Dawn@4 354 e=sum(frames.^2,2);
Dawn@4 355 emax=max(e);
Dawn@4 356 emin=min(e);
Dawn@4 357 I1=0.03*(emax-emin)+emin;
Dawn@4 358 I2=4*emin;
Dawn@4 359 thr=25*min(I1,I2);
Dawn@4 360
Dawn@4 361 %*****************************************************************************************
Dawn@4 362 %% ------------------- split signal into frames ---------------
Dawn@4 363 function frames=toframes(input,curpos,segmentlen,wintype)
Dawn@4 364 len=length(input);
Dawn@4 365 numFrames=length(curpos);
Dawn@4 366 frames=zeros(numFrames,segmentlen);
Dawn@4 367 start=curpos-round(segmentlen/2);
Dawn@4 368 offset=(0:segmentlen-1);
Dawn@4 369 index_start=find(start<1); % find out those frames beyond the first point
Dawn@4 370 start(index_start)=1; % for those, just use the first frame
Dawn@4 371 endpos=start+segmentlen-1;
Dawn@4 372 index=find(endpos>len);
Dawn@4 373 endpos(index)=len; % duplicate the last several frames if window is over the limit.
Dawn@4 374 start(index)=len+1-segmentlen;
Dawn@4 375 frames(:)=input(start(:,ones(1,segmentlen))+offset(ones(numFrames,1),:));
Dawn@4 376 [nf, len]=size(frames);
Dawn@4 377 win=window(segmentlen,wintype);
Dawn@4 378 frames = frames .* win(ones(nf,1),:);
Dawn@4 379 %*****************************************************************************************
Dawn@4 380 %-------------- post voicing checking ---------------------------------------------
Dawn@4 381 function voicing=postvda(segment, curf0,Fs,r_threshold)
Dawn@4 382 %%% check voicing again using estimated F0, which follows Hermes, SHS algorithm, JASA, 1988
Dawn@4 383 if nargin<4
Dawn@4 384 r_threshold=0.2;
Dawn@4 385 end
Dawn@4 386 estimated_period=1/curf0;
Dawn@4 387 mid_point=round(length(segment)/2);
Dawn@4 388 num_points=round(estimated_period*Fs); % number of points in each period
Dawn@4 389 start_point=mid_point-num_points;
Dawn@4 390 end_point=mid_point+num_points;
Dawn@4 391 if (start_point <1)
Dawn@4 392 start_point=1;
Dawn@4 393 mid_point=start_point+num_points;
Dawn@4 394 if (mid_point>length(segment)) % this is unreasonable, set f0 to zero
Dawn@4 395 voicing=0;
Dawn@4 396 return;
Dawn@4 397 end
Dawn@4 398 end
Dawn@4 399 segment1=segment(start_point:mid_point);
Dawn@4 400 if (end_point>length(segment))
Dawn@4 401 end_point=length(segment);
Dawn@4 402 mid_point=end_point-num_points;
Dawn@4 403 if (mid_point<1) % this is unreasonable, set f0 to zero
Dawn@4 404 voicing=0;
Dawn@4 405 return;
Dawn@4 406 end
Dawn@4 407 end
Dawn@4 408 segment2=segment(mid_point:end_point);
Dawn@4 409 len=min(length(segment1),length(segment2));
Dawn@4 410 r=corrcoef(segment1(1:len),segment2(1:len));
Dawn@4 411 r1=r(1,2);
Dawn@4 412 if (r1<r_threshold) % correlation threshold
Dawn@4 413 voicing=0;
Dawn@4 414 else
Dawn@4 415 voicing=1;
Dawn@4 416 end
Dawn@4 417 USE_ZCR=1;
Dawn@4 418 if(USE_ZCR & voicing)
Dawn@4 419 zcr1=zcr(segment1,estimated_period);
Dawn@4 420 zcr2=zcr(segment2,estimated_period);
Dawn@4 421 %minzcr=2500;
Dawn@4 422 minzcr=3500;
Dawn@4 423 if (zcr1<minzcr | zcr2<minzcr)
Dawn@4 424 voicing=1;
Dawn@4 425 else
Dawn@4 426 voicing=0;
Dawn@4 427 end
Dawn@4 428 end
Dawn@4 429 %%*****************************************************************************************
Dawn@4 430 %--------------------- Compute zero-crossing rate -------------------------------------------
Dawn@4 431 function zcr=zcr(x,dur)
Dawn@4 432 % function zcr=zcr(x,dur) : compute zero-crossing rate
Dawn@4 433 % x: input data
Dawn@4 434 % x: duration of the input data
Dawn@4 435 [nf,len]=size(x);
Dawn@4 436 zcr=sum(0.5*abs(sign(x(:,2:len))-sign(x(:,1:len-1))))/dur;
Dawn@4 437 %%*************************************************************************************
Dawn@4 438 %--------------------- Window function -------------------------------------------
Dawn@4 439 function w = window(N,wt,beta)
Dawn@4 440 %
Dawn@4 441 % w = window(N,wt)
Dawn@4 442 %
Dawn@4 443 % generate a window function
Dawn@4 444 %
Dawn@4 445 % N = length of desired window
Dawn@4 446 % wt = window type desired
Dawn@4 447 % 'rect' = rectangular 'tria' = triangular (Bartlett)
Dawn@4 448 % 'hann' = Hanning 'hamm' = Hamming
Dawn@4 449 % 'blac' = Blackman
Dawn@4 450 % 'kais' = Kaiser
Dawn@4 451 %
Dawn@4 452 % w = row vector containing samples of the desired window
Dawn@4 453 % beta : used in Kaiser window
Dawn@4 454
Dawn@4 455 nn = N-1;
Dawn@4 456 n=0:nn;
Dawn@4 457 pn = 2*pi*(0:nn)/nn;
Dawn@4 458 if wt(1,1:4) == 'rect',
Dawn@4 459 w = ones(1,N);
Dawn@4 460 elseif wt(1,1:4) == 'tria',
Dawn@4 461 m = nn/2;
Dawn@4 462 w = (0:m)/m;
Dawn@4 463 w = [w w(ceil(m):-1:1)];
Dawn@4 464 elseif wt(1,1:4) == 'hann',
Dawn@4 465 w = 0.5*(1 - cos(pn));
Dawn@4 466 elseif wt(1,1:4) == 'hamm',
Dawn@4 467 w = .54 - .46*cos(pn);
Dawn@4 468 elseif wt(1,1:4) == 'blac',
Dawn@4 469 w = .42 -.5*cos(pn) + .08*cos(2*pn);
Dawn@4 470 elseif wt(1,1:4) == 'kais',
Dawn@4 471 if nargin<3
Dawn@4 472 error('you need provide beta!')
Dawn@4 473 end
Dawn@4 474 w =bessel1(beta*sqrt(1-((n-N/2)/(N/2)).^2))./bessel1(beta);
Dawn@4 475 else
Dawn@4 476 disp('Incorrect Window type requested')
Dawn@4 477 end