Mercurial > hg > d-case-event
view genCQTkernel.m @ 1:3ea8ed09af0f tip
additional clarifications
author | Dimitrios Giannoulis |
---|---|
date | Wed, 13 Mar 2013 11:57:24 +0000 |
parents | 22b10c5b72e8 |
children |
line wrap: on
line source
function cqtKernel = genCQTkernel(fmax, bins, fs, varargin) %Calculating the CQT Kernel for one octave. All atoms are center-stacked. %Atoms are placed so that the stacks of lower octaves are centered at the %same positions in time, however, their amount is reduced by factor two for %each octave down. % %INPUT: % fmax ... highest frequency of interest % bins ... number of bins per octave % fs ... sampling frequency % %optional input parameters (parameter name/value pairs): % % 'q' ... Q scaling factor. Default: 1. % 'atomHopFactor' ... relative hop size corresponding to the shortest % temporal atom. Default: 0.25. % 'thresh' ... values smaller than 'tresh' in the spectral kernel are rounded to % zero. Default: 0.0005. % 'win' ... defines which window will be used for the CQT. Valid % values are: 'blackman','hann' and 'blackmanharris'. To % use the square root of each window use the prefix 'sqrt_' % (i.e. 'sqrt_blackman'). Default: 'sqrt_blackmanharris' % 'perfRast' ... if set to 1 the kernel is designed in order to % enable perfect rasterization using the function % cqtPerfectRast() (Default: perRast=0). See documentation of % 'cqtPerfectRast' for further information. % %OUTPUT: % cqtKernel ... Structure that contains the spectral kernel 'fKernel' % additional design parameters used in cqt(), cqtPerfectRast() and icqt(). % %Christian Schörkhuber, Anssi Klapuri 2010-06 %% input parameters q = 1; %default value atomHopFactor = 0.25; %default value thresh = 0.0005; %default value winFlag = 'sqrt_blackmanharris'; %default value perfRast = 0; %default value for ain = 1:length(varargin) if strcmp(varargin{ain},'q'), q = varargin{ain+1}; end; if strcmp(varargin{ain},'atomHopFactor'), atomHopFactor = varargin{ain+1}; end; if strcmp(varargin{ain},'thresh'), thresh = varargin{ain+1}; end; if strcmp(varargin{ain},'win'), winFlag = varargin{ain+1}; end; if strcmp(varargin{ain},'perfRast'), perfRast = varargin{ain+1}; end; end %% define fmin = (fmax/2)*2^(1/bins); Q = 1/(2^(1/bins)-1); Q = Q*q; Nk_max = Q * fs / fmin; Nk_max = round(Nk_max); %length of the largest atom [samples] %% Compute FFT size, FFT hop, atom hop, ... Nk_min = round( Q * fs / (fmin*2^((bins-1)/bins)) ); %length of the shortest atom [samples] atomHOP = round(Nk_min*atomHopFactor); %atom hop size first_center = ceil(Nk_max/2); %first possible center position within the frame first_center = atomHOP * ceil(first_center/atomHOP); %lock the first center to an integer multiple of the atom hop size FFTLen = 2^nextpow2(first_center+ceil(Nk_max/2)); %use smallest possible FFT size (increase sparsity) if perfRast winNr = floor((FFTLen-ceil(Nk_max/2)-first_center)/atomHOP); %number of temporal atoms per FFT Frame if winNr == 0 FFTLen = FFTLen * 2; winNr = floor((FFTLen-ceil(Nk_max/2)-first_center)/atomHOP); end else winNr = floor((FFTLen-ceil(Nk_max/2)-first_center)/atomHOP)+1; %number of temporal atoms per FFT Frame end last_center = first_center + (winNr-1)*atomHOP; fftHOP = (last_center + atomHOP) - first_center; % hop size of FFT frames fftOLP = (FFTLen-fftHOP/FFTLen)*100; %overlap of FFT frames in percent ***AK:needed? %% init variables tempKernel= zeros(1,FFTLen); sparKernel= []; %% Compute kernel atomInd = 0; for k = 1:bins Nk = round( Q * fs / (fmin*2^((k-1)/bins)) ); %N[k] = (fs/fk)*Q. Rounding will be omitted in future versions switch winFlag case 'sqrt_blackmanharris' winFct = sqrt(blackmanharris(Nk)); case 'blackmanharris' winFct = blackmanharris(Nk); case 'sqrt_hann' winFct = sqrt(hann(Nk,'periodic')); case 'hann' winFct = hann(Nk,'periodic'); case 'sqrt_blackman' winFct = sqrt(hann(blackman,'periodic')); case 'blackman' winFct = blackman(Nk,'periodic'); otherwise winFct = sqrt(blackmanharris(Nk)); if k==1, warning('CQT:INPUT','Non-existing window function. Default window is used!'); end; end fk = fmin*2^((k-1)/bins); tempKernelBin = (winFct/Nk) .* exp(2*pi*1i*fk*(0:Nk-1)'/fs); atomOffset = first_center - ceil(Nk/2); for i = 1:winNr shift = atomOffset + ((i-1) * atomHOP); tempKernel(1+shift:Nk+shift) = tempKernelBin; atomInd = atomInd+1; specKernel= fft(tempKernel); specKernel(abs(specKernel)<=thresh)= 0; sparKernel= sparse([sparKernel; specKernel]); tempKernel = zeros(1,FFTLen); %reset window end end sparKernel = (sparKernel.')/FFTLen; %% Normalize the magnitudes of the atoms [ignore,wx1]=max(sparKernel(:,1)); [ignore,wx2]=max(sparKernel(:,end)); wK=sparKernel(wx1:wx2,:); wK = diag(wK * wK'); wK = wK(round(1/q)+1:(end-round(1/q)-2)); weight = 1./mean(abs(wK)); weight = weight.*(fftHOP/FFTLen); weight = sqrt(weight); %sqrt because the same weight is applied in icqt again sparKernel = weight.*sparKernel; %% return cqtKernel = struct('fKernel',sparKernel,'fftLEN',FFTLen,'fftHOP',fftHOP,'fftOverlap',fftOLP,'perfRast',perfRast,... 'bins',bins,'firstcenter',first_center,'atomHOP',atomHOP,'atomNr',winNr,'Nk_max',Nk_max,'Q',Q,'fmin',fmin);