Mercurial > hg > d-case-event
view cqt.m @ 1:3ea8ed09af0f tip
additional clarifications
author | Dimitrios Giannoulis |
---|---|
date | Wed, 13 Mar 2013 11:57:24 +0000 |
parents | 22b10c5b72e8 |
children |
line wrap: on
line source
function Xcqt = cqt(x,fmin,fmax,bins,fs,varargin) %Xcqt = cqt(x,fmin,fmax,bins,fs,varargin) calculates the constant-Q transform of the input signal x. % %INPUT: % fmin ... lowest frequency of interest % fmax ... highest frequency of interest % bins ... frequency bins per octave % fs ... sampling rate % % optional input parameters (parameter name/value pairs): % % 'atomHopFactor' ... overlap of temporal atoms in percent. Default: 0.25. % % 'q' ... the maximum value for optimal reconstruction is q=1. % For values smaller than 1 the bandwidths of the spectral % atoms (filter) are increased retaining their center % frequencies (frequency 'smearing', frequency domain redundancy % increases, time resolutin improves). Default: 1. % 'thresh' ... all values in the cqt kernel smaller than tresh are % rounded to zero. A high value for thresh yields a % very sparse kernel (fast) but introduces a bigger error. % The default value is chosen so that the error due to rounding is negligible. % 'kernel' ... if the cqt kernel structure has been precomputed % (using function 'genCQTkernel'), the computation of the kernel % will be by-passed below). % 'win' ... defines which window will be used for the CQT. Valid % values are: 'blackman','hann' and 'blackmanharris'. To % use the square root of each window use the prefix 'sqrt_' % (i.e. 'sqrt_blackman'). Default: 'sqrt_blackmanharris' % 'coeffB', % 'coeffA' ... Filter coefficients for the anti-aliasing filter, where % 'coeffB' is the numerator and 'coeffA' is the % denominator (listed in descending powers of z). % %OUTPUT: % Xcqt ... struct that comprises various fields: % spCQT: CQT coefficients in the form of a sparse matrix % (rasterized, not interpolated) % fKernel: spectral Kernel % fmin: frequency of the lowest bin % fmax: frequency of the hiqhest bin % octaveNr: number of octaves processed % bins: number of bins per octave % intParams: structure containing additional parameters for the inverse transform % %Christian Schörkhuber, Anssi Klapuri 2010-06 %% input checking if size(x,2) > 1 && size(x,1) > 1, error('cqt requires one-dimensional input!'); end; if size(x,2) > 1, x = x(:); end; %column vector %% input parameters q = 1; %default value atomHopFactor = 0.25; %default value thresh = 0.0005; %default value winFlag = 'sqrt_blackmanharris'; for ain = 1:1:length(varargin) if strcmp(varargin{ain},'q'), q = varargin{ain+1}; end; if strcmp(varargin{ain},'atomHopFactor'), atomHopFactor = varargin{ain+1}; end; if strcmp(varargin{ain},'thresh'), thresh = varargin{ain+1}; end; if strcmp(varargin{ain},'kernel'), cqtKernel = varargin{ain+1}; end; if strcmp(varargin{ain},'win'), winFlag = varargin{ain+1}; end; if strcmp(varargin{ain},'coeffB'), B = varargin{ain+1}; end; if strcmp(varargin{ain},'coeffA'), A = varargin{ain+1}; end; end %% define octaveNr = ceil(log2(fmax/fmin)); xlen_init = length(x); %% design lowpass filter if ~exist('B','var') || ~exist('A','var') LPorder = 6; %order of the anti-aliasing filter cutoff = 0.5; [B A] = butter(LPorder,cutoff,'low'); %design f_nyquist/2-lowpass filter end %% design kernel for one octave if ~exist('cqtKernel','var') cqtKernel = genCQTkernel(fmax, bins,fs,'q',q,'atomHopFactor',atomHopFactor,'thresh',thresh,'win',winFlag); end %% calculate CQT cellCQT = cell(1,octaveNr); maxBlock = cqtKernel.fftLEN * 2^(octaveNr-1); %largest FFT Block (virtual) suffixZeros = maxBlock; prefixZeros = maxBlock; x = [zeros(prefixZeros,1); x; zeros(suffixZeros,1)]; %zeropadding OVRLP = cqtKernel.fftLEN - cqtKernel.fftHOP; K = cqtKernel.fKernel'; %conjugate spectral kernel for cqt transformation for i = 1:octaveNr xx = buffer(x,cqtKernel.fftLEN, OVRLP,'nodelay'); %generating FFT blocks XX = fft(xx); %applying fft to each column (each FFT frame) cellCQT{i} = K*XX; %calculating cqt coefficients for all FFT frames for this octave if i~=octaveNr x = filtfilt(B,A,x); %anti aliasing filter x = x(1:2:end); %drop samplerate by 2 end end %% map to sparse matrix representation spCQT = cell2sparse(cellCQT,octaveNr,bins,cqtKernel.firstcenter,cqtKernel.atomHOP,cqtKernel.atomNr); %% return intParam = struct('sufZeros',suffixZeros,'preZeros',prefixZeros,'xlen_init',xlen_init,'fftLEN',cqtKernel.fftLEN,'fftHOP',cqtKernel.fftHOP,... 'q',q,'filtCoeffA',A,'filtCoeffB',B,'firstcenter',cqtKernel.firstcenter,'atomHOP',cqtKernel.atomHOP,... 'atomNr',cqtKernel.atomNr,'Nk_max',cqtKernel.Nk_max,'Q',cqtKernel.Q,'rast',0); Xcqt = struct('spCQT',spCQT,'fKernel',cqtKernel.fKernel,'fmax',fmax,'fmin',fmin*2^(1/bins),'octaveNr',octaveNr,'bins',cqtKernel.bins,'intParams',intParam);