view src/dsp/FFT.cpp @ 196:da283326bcd3 tip master

Update plugin versions in RDF
author Chris Cannam <cannam@all-day-breakfast.com>
date Fri, 28 Feb 2020 09:43:02 +0000
parents edbec47f4a3d
children
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*-  vi:set ts=8 sts=4 sw=4: */
/*
    Constant-Q library
    Copyright (c) 2013-2014 Queen Mary, University of London

    Permission is hereby granted, free of charge, to any person
    obtaining a copy of this software and associated documentation
    files (the "Software"), to deal in the Software without
    restriction, including without limitation the rights to use, copy,
    modify, merge, publish, distribute, sublicense, and/or sell copies
    of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:

    The above copyright notice and this permission notice shall be
    included in all copies or substantial portions of the Software.

    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
    CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
    CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
    WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

    Except as contained in this notice, the names of the Centre for
    Digital Music; Queen Mary, University of London; and Chris Cannam
    shall not be used in advertising or otherwise to promote the sale,
    use or other dealings in this Software without prior written
    authorization.
*/

#include "FFT.h"

#include "MathUtilities.h"

#include "kiss_fft.h"
#include "kiss_fftr.h"

#include <cmath>

#include <iostream>

#include <stdexcept>

class FFT::D
{
public:
    D(int n) : m_n(n) {
        m_planf = kiss_fft_alloc(m_n, 0, NULL, NULL);
        m_plani = kiss_fft_alloc(m_n, 1, NULL, NULL);
        m_kin = new kiss_fft_cpx[m_n];
        m_kout = new kiss_fft_cpx[m_n];
    }

    ~D() {
        kiss_fft_free(m_planf);
        kiss_fft_free(m_plani);
        delete[] m_kin;
        delete[] m_kout;
    }

    void process(bool inverse,
                 const double *ri,
                 const double *ii,
                 double *ro,
                 double *io) {

        for (int i = 0; i < m_n; ++i) {
            m_kin[i].r = ri[i];
            m_kin[i].i = (ii ? ii[i] : 0.0);
        }

        if (!inverse) {

            kiss_fft(m_planf, m_kin, m_kout);

            for (int i = 0; i < m_n; ++i) {
                ro[i] = m_kout[i].r;
                io[i] = m_kout[i].i;
            }

        } else {

            kiss_fft(m_plani, m_kin, m_kout);

            double scale = 1.0 / m_n;

            for (int i = 0; i < m_n; ++i) {
                ro[i] = m_kout[i].r * scale;
                io[i] = m_kout[i].i * scale;
            }
        }
    }
    
private:
    int m_n;
    kiss_fft_cfg m_planf;
    kiss_fft_cfg m_plani;
    kiss_fft_cpx *m_kin;
    kiss_fft_cpx *m_kout;
};        

FFT::FFT(int n) :
    m_d(new D(n))
{
}

FFT::~FFT()
{
    delete m_d;
}

void
FFT::process(bool inverse,
             const double *p_lpRealIn, const double *p_lpImagIn,
             double *p_lpRealOut, double *p_lpImagOut)
{
    m_d->process(inverse,
                 p_lpRealIn, p_lpImagIn,
                 p_lpRealOut, p_lpImagOut);
}
    
class FFTReal::D
{
public:
    D(int n) : m_n(n) {
        if (n % 2) {
            throw std::invalid_argument
                ("nsamples must be even in FFTReal constructor");
        }
        m_planf = kiss_fftr_alloc(m_n, 0, NULL, NULL);
        m_plani = kiss_fftr_alloc(m_n, 1, NULL, NULL);
        m_c = new kiss_fft_cpx[m_n];
    }

    ~D() {
        kiss_fftr_free(m_planf);
        kiss_fftr_free(m_plani);
        delete[] m_c;
    }

    void forward(const double *ri, double *ro, double *io) {

        kiss_fftr(m_planf, ri, m_c);

        for (int i = 0; i <= m_n/2; ++i) {
            ro[i] = m_c[i].r;
            io[i] = m_c[i].i;
        }

        for (int i = 0; i + 1 < m_n/2; ++i) {
            ro[m_n - i - 1] =  ro[i + 1];
            io[m_n - i - 1] = -io[i + 1];
        }
    }

    void forwardMagnitude(const double *ri, double *mo) {

        double *io = new double[m_n];

        forward(ri, mo, io);

        for (int i = 0; i < m_n; ++i) {
            mo[i] = sqrt(mo[i] * mo[i] + io[i] * io[i]);
        }

        delete[] io;
    }

    void inverse(const double *ri, const double *ii, double *ro) {

        // kiss_fftr.h says
        // "input freqdata has nfft/2+1 complex points"

        for (int i = 0; i < m_n/2 + 1; ++i) {
            m_c[i].r = ri[i];
            m_c[i].i = ii[i];
        }
        
        kiss_fftri(m_plani, m_c, ro);

        double scale = 1.0 / m_n;

        for (int i = 0; i < m_n; ++i) {
            ro[i] *= scale;
        }
    }

private:
    int m_n;
    kiss_fftr_cfg m_planf;
    kiss_fftr_cfg m_plani;
    kiss_fft_cpx *m_c;
};

FFTReal::FFTReal(int n) :
    m_d(new D(n)) 
{
}

FFTReal::~FFTReal()
{
    delete m_d;
}

void
FFTReal::forward(const double *ri, double *ro, double *io)
{
    m_d->forward(ri, ro, io);
}

void
FFTReal::forwardMagnitude(const double *ri, double *mo)
{
    m_d->forwardMagnitude(ri, mo);
}

void
FFTReal::inverse(const double *ri, const double *ii, double *ro)
{
    m_d->inverse(ri, ii, ro);
}