Mercurial > hg > constant-q-cpp
view src/CQInverse.cpp @ 196:da283326bcd3 tip master
Update plugin versions in RDF
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Fri, 28 Feb 2020 09:43:02 +0000 |
parents | 1081c73fbbe3 |
children |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Constant-Q library Copyright (c) 2013-2014 Queen Mary, University of London Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the names of the Centre for Digital Music; Queen Mary, University of London; and Chris Cannam shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization. */ #include "CQInverse.h" #include "dsp/Resampler.h" #include "dsp/MathUtilities.h" #include "dsp/FFT.h" #include <algorithm> #include <iostream> #include <stdexcept> #include <cmath> using std::vector; using std::cerr; using std::endl; //#define DEBUG_CQ 1 CQInverse::CQInverse(CQParameters params) : m_inparams(params), m_sampleRate(params.sampleRate), m_maxFrequency(params.maxFrequency), m_minFrequency(params.minFrequency), m_binsPerOctave(params.binsPerOctave), m_fft(0) { if (m_minFrequency <= 0.0 || m_maxFrequency <= 0.0) { throw std::invalid_argument("Frequency extents must be positive"); } initialise(); } CQInverse::~CQInverse() { delete m_fft; for (int i = 0; i < (int)m_upsamplers.size(); ++i) { delete m_upsamplers[i]; } delete m_kernel; } double CQInverse::getMinFrequency() const { return m_p.minFrequency / pow(2.0, m_octaves - 1); } double CQInverse::getBinFrequency(double bin) const { // our bins are returned in high->low order bin = (getBinsPerOctave() * getOctaves()) - bin - 1; return getMinFrequency() * pow(2, (bin / getBinsPerOctave())); } void CQInverse::initialise() { m_octaves = int(ceil(log(m_maxFrequency / m_minFrequency) / log(2))); if (m_octaves < 1) { m_kernel = 0; // incidentally causing isValid() to return false return; } m_kernel = new CQKernel(m_inparams); m_p = m_kernel->getProperties(); // Use exact powers of two for resampling rates. They don't have // to be related to our actual samplerate: the resampler only // cares about the ratio, but it only accepts integer source and // target rates, and if we start from the actual samplerate we // risk getting non-integer rates for lower octaves int sourceRate = pow(2, m_octaves); vector<int> latencies; // top octave, no resampling latencies.push_back(0); m_upsamplers.push_back(0); for (int i = 1; i < m_octaves; ++i) { int factor = pow(2, i); Resampler *r = new Resampler (sourceRate / factor, sourceRate, 50, 0.05); #ifdef DEBUG_CQ cerr << "inverse: octave " << i << ": resample from " << sourceRate/factor << " to " << sourceRate << endl; #endif // See ConstantQ.cpp for discussion on latency -- output // latency here is at target rate which, this way around, is // what we want latencies.push_back(r->getLatency()); m_upsamplers.push_back(r); } // additionally we will have fftHop latency at individual octave // rate (before upsampling) for the overlap-add in each octave for (int i = 0; i < m_octaves; ++i) { latencies[i] += m_p.fftHop * pow(2, i); } // Now reverse the drop adjustment made in ConstantQ to align the // atom centres across different octaves (but this time at output // sample rate) int emptyHops = m_p.firstCentre / m_p.atomSpacing; vector<int> pushes; for (int i = 0; i < m_octaves; ++i) { int factor = pow(2, i); int pushHops = emptyHops * pow(2, m_octaves - i - 1) - emptyHops; int push = ((pushHops * m_p.fftHop) * factor) / m_p.atomsPerFrame; pushes.push_back(push); } int maxLatLessPush = 0; for (int i = 0; i < m_octaves; ++i) { int latLessPush = latencies[i] - pushes[i]; if (latLessPush > maxLatLessPush) maxLatLessPush = latLessPush; } int totalLatency = maxLatLessPush + 10; if (totalLatency < 0) totalLatency = 0; m_outputLatency = totalLatency + m_p.firstCentre * pow(2, m_octaves-1); #ifdef DEBUG_CQ cerr << "totalLatency = " << totalLatency << ", m_outputLatency = " << m_outputLatency << endl; #endif for (int i = 0; i < m_octaves; ++i) { // Calculate the difference between the total latency applied // across all octaves, and the existing latency due to the // upsampler for this octave. int latencyPadding = totalLatency - latencies[i] + pushes[i]; #ifdef DEBUG_CQ cerr << "octave " << i << ": push " << pushes[i] << ", resampler latency inc overlap space " << latencies[i] << ", latencyPadding = " << latencyPadding << " (/factor = " << latencyPadding / pow(2, i) << ")" << endl; #endif m_buffers.push_back(RealSequence(latencyPadding, 0.0)); } for (int i = 0; i < m_octaves; ++i) { // Fixed-size buffer for IFFT overlap-add m_olaBufs.push_back(RealSequence(m_p.fftSize, 0.0)); } m_fft = new FFTReal(m_p.fftSize); } CQInverse::RealSequence CQInverse::process(const ComplexBlock &block) { // The input data is of the form produced by ConstantQ::process -- // an unknown number N of columns of varying height. We assert // that N is a multiple of atomsPerFrame * 2^(octaves-1), as must // be the case for data that came directly from our ConstantQ // implementation. int widthProvided = block.size(); if (widthProvided == 0) { return drawFromBuffers(); } int blockWidth = m_p.atomsPerFrame * int(pow(2, m_octaves - 1)); if (widthProvided % blockWidth != 0) { cerr << "ERROR: CQInverse::process: Input block size (" << widthProvided << ") must be a multiple of processing block width " << "(atoms-per-frame * 2^(octaves-1) = " << m_p.atomsPerFrame << " * 2^(" << m_octaves << "-1) = " << blockWidth << ")" << endl; throw std::invalid_argument ("Input block size must be a multiple of processing block width"); } // Procedure: // // 1. Slice the list of columns into a set of lists of columns, // one per octave, each of width N / (2^octave-1) and height // binsPerOctave, containing the values present in that octave // // 2. Group each octave list by atomsPerFrame columns at a time, // and stack these so as to achieve a list, for each octave, of // taller columns of height binsPerOctave * atomsPerFrame // // 3. For each taller column, take the product with the inverse CQ // kernel (which is the conjugate of the forward kernel) and // perform an inverse FFT // // 4. Overlap-add each octave's resynthesised blocks (unwindowed) // // 5. Resample each octave's overlap-add stream to the original // rate // // 6. Sum the resampled streams and return for (int i = 0; i < m_octaves; ++i) { // Step 1 ComplexBlock oct; for (int j = 0; j < widthProvided; ++j) { int h = block[j].size(); if (h < m_binsPerOctave * (i+1)) { continue; } ComplexColumn col(block[j].begin() + m_binsPerOctave * i, block[j].begin() + m_binsPerOctave * (i+1)); oct.push_back(col); } // Steps 2, 3, 4, 5 processOctave(i, oct); } // Step 6 return drawFromBuffers(); } CQInverse::RealSequence CQInverse::drawFromBuffers() { // 6. Sum the resampled streams and return int available = 0; for (int i = 0; i < m_octaves; ++i) { if (i == 0 || int(m_buffers[i].size()) < available) { available = m_buffers[i].size(); } } RealSequence result(available, 0); if (available == 0) { return result; } for (int i = 0; i < m_octaves; ++i) { for (int j = 0; j < available; ++j) { result[j] += m_buffers[i][j]; } m_buffers[i] = RealSequence(m_buffers[i].begin() + available, m_buffers[i].end()); } return result; } CQInverse::RealSequence CQInverse::getRemainingOutput() { for (int j = 0; j < m_octaves; ++j) { int factor = pow(2, j); int latency = (j > 0 ? m_upsamplers[j]->getLatency() : 0) / factor; for (int i = 0; i < (latency + m_p.fftSize) / m_p.fftHop; ++i) { overlapAddAndResample(j, RealSequence(m_olaBufs[j].size(), 0)); } } return drawFromBuffers(); } void CQInverse::processOctave(int octave, const ComplexBlock &columns) { // 2. Group each octave list by atomsPerFrame columns at a time, // and stack these so as to achieve a list, for each octave, of // taller columns of height binsPerOctave * atomsPerFrame int ncols = columns.size(); if (ncols % m_p.atomsPerFrame != 0) { cerr << "ERROR: CQInverse::process: Number of columns (" << ncols << ") in octave " << octave << " must be a multiple of atoms-per-frame (" << m_p.atomsPerFrame << ")" << endl; throw std::invalid_argument ("Columns in octave must be a multiple of atoms per frame"); } for (int i = 0; i < ncols; i += m_p.atomsPerFrame) { ComplexColumn tallcol; for (int b = 0; b < m_binsPerOctave; ++b) { for (int a = 0; a < m_p.atomsPerFrame; ++a) { tallcol.push_back(columns[i + a][m_binsPerOctave - b - 1]); } } processOctaveColumn(octave, tallcol); } } void CQInverse::processOctaveColumn(int octave, const ComplexColumn &column) { // 3. For each taller column, take the product with the inverse CQ // kernel (which is the conjugate of the forward kernel) and // perform an inverse FFT if ((int)column.size() != m_p.atomsPerFrame * m_binsPerOctave) { cerr << "ERROR: CQInverse::processOctaveColumn: Height of column (" << column.size() << ") in octave " << octave << " must be atoms-per-frame * bins-per-octave (" << m_p.atomsPerFrame << " * " << m_binsPerOctave << " = " << m_p.atomsPerFrame * m_binsPerOctave << ")" << endl; throw std::invalid_argument ("Column height must match atoms-per-frame * bins-per-octave"); } ComplexSequence transformed = m_kernel->processInverse(column); int halfLen = m_p.fftSize/2 + 1; RealSequence ri(halfLen, 0); RealSequence ii(halfLen, 0); for (int i = 0; i < halfLen; ++i) { ri[i] = transformed[i].real(); ii[i] = transformed[i].imag(); } RealSequence timeDomain(m_p.fftSize, 0); m_fft->inverse(ri.data(), ii.data(), timeDomain.data()); overlapAddAndResample(octave, timeDomain); } void CQInverse::overlapAddAndResample(int octave, const RealSequence &seq) { // 4. Overlap-add each octave's resynthesised blocks (unwindowed) // // and // // 5. Resample each octave's overlap-add stream to the original // rate if (seq.size() != m_olaBufs[octave].size()) { cerr << "ERROR: CQInverse::overlapAdd: input sequence length (" << seq.size() << ") is expected to match OLA buffer size (" << m_olaBufs[octave].size() << ")" << endl; throw std::invalid_argument ("Input sequence length should match OLA buffer size"); } RealSequence toResample(m_olaBufs[octave].begin(), m_olaBufs[octave].begin() + m_p.fftHop); RealSequence resampled = octave > 0 ? m_upsamplers[octave]->process(toResample.data(), toResample.size()) : toResample; m_buffers[octave].insert(m_buffers[octave].end(), resampled.begin(), resampled.end()); m_olaBufs[octave] = RealSequence(m_olaBufs[octave].begin() + m_p.fftHop, m_olaBufs[octave].end()); RealSequence pad(m_p.fftHop, 0); m_olaBufs[octave].insert(m_olaBufs[octave].end(), pad.begin(), pad.end()); for (int i = 0; i < m_p.fftSize; ++i) { m_olaBufs[octave][i] += seq[i]; } }