diff src/ConstantQ.cpp @ 116:6deec2a51d13

Moving to standalone library layout
author Chris Cannam <c.cannam@qmul.ac.uk>
date Thu, 15 May 2014 12:04:00 +0100
parents
children 2375457f2876
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/ConstantQ.cpp	Thu May 15 12:04:00 2014 +0100
@@ -0,0 +1,352 @@
+/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*-  vi:set ts=8 sts=4 sw=4: */
+/*
+    Constant-Q library
+    Copyright (c) 2013-2014 Queen Mary, University of London
+
+    Permission is hereby granted, free of charge, to any person
+    obtaining a copy of this software and associated documentation
+    files (the "Software"), to deal in the Software without
+    restriction, including without limitation the rights to use, copy,
+    modify, merge, publish, distribute, sublicense, and/or sell copies
+    of the Software, and to permit persons to whom the Software is
+    furnished to do so, subject to the following conditions:
+
+    The above copyright notice and this permission notice shall be
+    included in all copies or substantial portions of the Software.
+
+    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+    MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
+    CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
+    CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+    WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+    Except as contained in this notice, the names of the Centre for
+    Digital Music; Queen Mary, University of London; and Chris Cannam
+    shall not be used in advertising or otherwise to promote the sale,
+    use or other dealings in this Software without prior written
+    authorization.
+*/
+
+#include "ConstantQ.h"
+
+#include "CQKernel.h"
+
+#include "dsp/rateconversion/Resampler.h"
+#include "maths/MathUtilities.h"
+#include "dsp/transforms/FFT.h"
+
+#include <algorithm>
+#include <iostream>
+#include <stdexcept>
+
+using std::vector;
+using std::cerr;
+using std::endl;
+
+//#define DEBUG_CQ 1
+
+ConstantQ::ConstantQ(double sampleRate,
+                     double minFreq,
+                     double maxFreq,
+                     int binsPerOctave) :
+    m_sampleRate(sampleRate),
+    m_maxFrequency(maxFreq),
+    m_minFrequency(minFreq),
+    m_binsPerOctave(binsPerOctave),
+    m_fft(0)
+{
+    if (minFreq <= 0.0 || maxFreq <= 0.0) {
+        throw std::invalid_argument("Frequency extents must be positive");
+    }
+
+    initialise();
+}
+
+ConstantQ::~ConstantQ()
+{
+    delete m_fft;
+    for (int i = 0; i < (int)m_decimators.size(); ++i) {
+        delete m_decimators[i];
+    }
+    delete m_kernel;
+}
+
+double
+ConstantQ::getMinFrequency() const
+{
+    return m_p.minFrequency / pow(2.0, m_octaves - 1);
+}
+
+double
+ConstantQ::getBinFrequency(int bin) const
+{
+    return getMinFrequency() * pow(2, (double(bin) / getBinsPerOctave()));
+}
+
+void
+ConstantQ::initialise()
+{
+    m_octaves = int(ceil(log2(m_maxFrequency / m_minFrequency)));
+    m_kernel = new CQKernel(m_sampleRate, m_maxFrequency, m_binsPerOctave);
+    m_p = m_kernel->getProperties();
+    
+    // Use exact powers of two for resampling rates. They don't have
+    // to be related to our actual samplerate: the resampler only
+    // cares about the ratio, but it only accepts integer source and
+    // target rates, and if we start from the actual samplerate we
+    // risk getting non-integer rates for lower octaves
+
+    int sourceRate = pow(2, m_octaves);
+    vector<int> latencies;
+
+    // top octave, no resampling
+    latencies.push_back(0);
+    m_decimators.push_back(0);
+
+    for (int i = 1; i < m_octaves; ++i) {
+
+        int factor = pow(2, i);
+
+        Resampler *r = new Resampler
+            (sourceRate, sourceRate / factor, 50, 0.05);
+
+#ifdef DEBUG_CQ
+        cerr << "forward: octave " << i << ": resample from " << sourceRate << " to " << sourceRate / factor << endl;
+#endif
+
+        // We need to adapt the latencies so as to get the first input
+        // sample to be aligned, in time, at the decimator output
+        // across all octaves.
+        // 
+        // Our decimator uses a linear phase filter, but being causal
+        // it is not zero phase: it has a latency that depends on the
+        // decimation factor. Those latencies have been calculated
+        // per-octave and are available to us in the latencies
+        // array. Left to its own devices, the first input sample will
+        // appear at output sample 0 in the highest octave (where no
+        // decimation is needed), sample number latencies[1] in the
+        // next octave down, latencies[2] in the next one, etc. We get
+        // to apply some artificial per-octave latency after the
+        // decimator in the processing chain, in order to compensate
+        // for the differing latencies associated with different
+        // decimation factors. How much should we insert?
+        //
+        // The outputs of the decimators are at different rates (in
+        // terms of the relation between clock time and samples) and
+        // we want them aligned in terms of time. So, for example, a
+        // latency of 10 samples with a decimation factor of 2 is
+        // equivalent to a latency of 20 with no decimation -- they
+        // both result in the first output sample happening at the
+        // same equivalent time in milliseconds.
+	// 
+	// So here we record the latency added by the decimator, in
+	// terms of the sample rate of the undecimated signal. Then we
+	// use that to compensate in a moment, when we've discovered
+	// what the longest latency across all octaves is.
+
+        latencies.push_back(r->getLatency() * factor);
+        m_decimators.push_back(r);
+    }
+
+    m_bigBlockSize = m_p.fftSize * pow(2, m_octaves - 1);
+
+    // Now add in the extra padding and compensate for hops that must
+    // be dropped in order to align the atom centres across
+    // octaves. Again this is a bit trickier because we are doing it
+    // at input rather than output and so must work in per-octave
+    // sample rates rather than output blocks
+
+    int emptyHops = m_p.firstCentre / m_p.atomSpacing;
+
+    vector<int> drops;
+    for (int i = 0; i < m_octaves; ++i) {
+	int factor = pow(2, i);
+	int dropHops = emptyHops * pow(2, m_octaves - i - 1) - emptyHops;
+	int drop = ((dropHops * m_p.fftHop) * factor) / m_p.atomsPerFrame;
+	drops.push_back(drop);
+    }
+
+    int maxLatPlusDrop = 0;
+    for (int i = 0; i < m_octaves; ++i) {
+	int latPlusDrop = latencies[i] + drops[i];
+	if (latPlusDrop > maxLatPlusDrop) maxLatPlusDrop = latPlusDrop;
+    }
+
+    int totalLatency = maxLatPlusDrop;
+
+    int lat0 = totalLatency - latencies[0] - drops[0];
+    totalLatency = ceil(double(lat0 / m_p.fftHop) * m_p.fftHop)
+	+ latencies[0] + drops[0];
+
+    // We want (totalLatency - latencies[i]) to be a multiple of 2^i
+    // for each octave i, so that we do not end up with fractional
+    // octave latencies below. In theory this is hard, in practice if
+    // we ensure it for the last octave we should be OK.
+    double finalOctLat = latencies[m_octaves-1];
+    double finalOctFact = pow(2, m_octaves-1);
+    totalLatency =
+        int(round(finalOctLat +
+                  finalOctFact *
+                  ceil((totalLatency - finalOctLat) / finalOctFact)));
+
+#ifdef DEBUG_CQ
+    cerr << "total latency = " << totalLatency << endl;
+#endif
+
+    // Padding as in the reference (will be introduced with the
+    // latency compensation in the loop below)
+    m_outputLatency = totalLatency + m_bigBlockSize
+	- m_p.firstCentre * pow(2, m_octaves-1);
+
+#ifdef DEBUG_CQ
+    cerr << "m_bigBlockSize = " << m_bigBlockSize << ", firstCentre = "
+	 << m_p.firstCentre << ", m_octaves = " << m_octaves
+         << ", so m_outputLatency = " << m_outputLatency << endl;
+#endif
+
+    for (int i = 0; i < m_octaves; ++i) {
+
+	double factor = pow(2, i);
+
+	// Calculate the difference between the total latency applied
+	// across all octaves, and the existing latency due to the
+	// decimator for this octave, and then convert it back into
+	// the sample rate appropriate for the output latency of this
+	// decimator -- including one additional big block of padding
+	// (as in the reference).
+
+	double octaveLatency =
+	    double(totalLatency - latencies[i] - drops[i]
+		   + m_bigBlockSize) / factor;
+
+#ifdef DEBUG_CQ
+        cerr << "octave " << i << ": resampler latency = " << latencies[i]
+             << ", drop " << drops[i] << " (/factor = " << drops[i]/factor
+             << "), octaveLatency = " << octaveLatency << " -> "
+             << int(round(octaveLatency)) << " (diff * factor = "
+             << (octaveLatency - round(octaveLatency)) << " * "
+             << factor << " = "
+             << (octaveLatency - round(octaveLatency)) * factor << ")" << endl;
+
+        cerr << "double(" << totalLatency << " - " 
+             << latencies[i] << " - " << drops[i] << " + " 
+             << m_bigBlockSize << ") / " << factor << " = " 
+             << octaveLatency << endl;
+#endif
+
+        m_buffers.push_back
+            (RealSequence(int(round(octaveLatency)), 0.0));
+    }
+
+    m_fft = new FFTReal(m_p.fftSize);
+}
+
+ConstantQ::ComplexBlock
+ConstantQ::process(const RealSequence &td)
+{
+    m_buffers[0].insert(m_buffers[0].end(), td.begin(), td.end());
+
+    for (int i = 1; i < m_octaves; ++i) {
+        RealSequence dec = m_decimators[i]->process(td.data(), td.size());
+        m_buffers[i].insert(m_buffers[i].end(), dec.begin(), dec.end());
+    }
+
+    ComplexBlock out;
+
+    while (true) {
+
+	// We could have quite different remaining sample counts in
+	// different octaves, because (apart from the predictable
+	// added counts for decimator output on each block) we also
+	// have variable additional latency per octave
+	bool enough = true;
+	for (int i = 0; i < m_octaves; ++i) {
+	    int required = m_p.fftSize * pow(2, m_octaves - i - 1);
+	    if ((int)m_buffers[i].size() < required) {
+		enough = false;
+	    }
+	}
+	if (!enough) break;
+
+        int base = out.size();
+        int totalColumns = pow(2, m_octaves - 1) * m_p.atomsPerFrame;
+        for (int i = 0; i < totalColumns; ++i) {
+            out.push_back(ComplexColumn());
+        }
+
+        for (int octave = 0; octave < m_octaves; ++octave) {
+
+            int blocksThisOctave = pow(2, (m_octaves - octave - 1));
+
+            for (int b = 0; b < blocksThisOctave; ++b) {
+                ComplexBlock block = processOctaveBlock(octave);
+                
+                for (int j = 0; j < m_p.atomsPerFrame; ++j) {
+
+                    int target = base +
+			    (b * (totalColumns / blocksThisOctave) + 
+			     (j * ((totalColumns / blocksThisOctave) /
+				   m_p.atomsPerFrame)));
+
+                    while (int(out[target].size()) < 
+                           m_p.binsPerOctave * (octave + 1)) {
+                        out[target].push_back(Complex());
+                    }
+                    
+                    for (int i = 0; i < m_p.binsPerOctave; ++i) {
+                        out[target][m_p.binsPerOctave * octave + i] = 
+                            block[j][m_p.binsPerOctave - i - 1];
+                    }
+                }
+            }
+        }
+    }
+
+    return out;
+}
+
+ConstantQ::ComplexBlock
+ConstantQ::getRemainingOutput()
+{
+    // Same as padding added at start, though rounded up
+    int pad = ceil(double(m_outputLatency) / m_bigBlockSize) * m_bigBlockSize;
+    RealSequence zeros(pad, 0.0);
+    return process(zeros);
+}
+
+ConstantQ::ComplexBlock
+ConstantQ::processOctaveBlock(int octave)
+{
+    RealSequence ro(m_p.fftSize, 0.0);
+    RealSequence io(m_p.fftSize, 0.0);
+
+    m_fft->forward(m_buffers[octave].data(), ro.data(), io.data());
+
+    RealSequence shifted;
+    shifted.insert(shifted.end(), 
+                   m_buffers[octave].begin() + m_p.fftHop,
+                   m_buffers[octave].end());
+    m_buffers[octave] = shifted;
+
+    ComplexSequence cv;
+    for (int i = 0; i < m_p.fftSize; ++i) {
+        cv.push_back(Complex(ro[i], io[i]));
+    }
+
+    ComplexSequence cqrowvec = m_kernel->processForward(cv);
+
+    // Reform into a column matrix
+    ComplexBlock cqblock;
+    for (int j = 0; j < m_p.atomsPerFrame; ++j) {
+        cqblock.push_back(ComplexColumn());
+        for (int i = 0; i < m_p.binsPerOctave; ++i) {
+            cqblock[j].push_back(cqrowvec[i * m_p.atomsPerFrame + j]);
+        }
+    }
+
+    return cqblock;
+}
+
+