Mercurial > hg > constant-q-cpp
diff src/ConstantQ.cpp @ 116:6deec2a51d13
Moving to standalone library layout
author | Chris Cannam <c.cannam@qmul.ac.uk> |
---|---|
date | Thu, 15 May 2014 12:04:00 +0100 |
parents | |
children | 2375457f2876 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/ConstantQ.cpp Thu May 15 12:04:00 2014 +0100 @@ -0,0 +1,352 @@ +/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ +/* + Constant-Q library + Copyright (c) 2013-2014 Queen Mary, University of London + + Permission is hereby granted, free of charge, to any person + obtaining a copy of this software and associated documentation + files (the "Software"), to deal in the Software without + restriction, including without limitation the rights to use, copy, + modify, merge, publish, distribute, sublicense, and/or sell copies + of the Software, and to permit persons to whom the Software is + furnished to do so, subject to the following conditions: + + The above copyright notice and this permission notice shall be + included in all copies or substantial portions of the Software. + + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY + CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF + CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION + WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + + Except as contained in this notice, the names of the Centre for + Digital Music; Queen Mary, University of London; and Chris Cannam + shall not be used in advertising or otherwise to promote the sale, + use or other dealings in this Software without prior written + authorization. +*/ + +#include "ConstantQ.h" + +#include "CQKernel.h" + +#include "dsp/rateconversion/Resampler.h" +#include "maths/MathUtilities.h" +#include "dsp/transforms/FFT.h" + +#include <algorithm> +#include <iostream> +#include <stdexcept> + +using std::vector; +using std::cerr; +using std::endl; + +//#define DEBUG_CQ 1 + +ConstantQ::ConstantQ(double sampleRate, + double minFreq, + double maxFreq, + int binsPerOctave) : + m_sampleRate(sampleRate), + m_maxFrequency(maxFreq), + m_minFrequency(minFreq), + m_binsPerOctave(binsPerOctave), + m_fft(0) +{ + if (minFreq <= 0.0 || maxFreq <= 0.0) { + throw std::invalid_argument("Frequency extents must be positive"); + } + + initialise(); +} + +ConstantQ::~ConstantQ() +{ + delete m_fft; + for (int i = 0; i < (int)m_decimators.size(); ++i) { + delete m_decimators[i]; + } + delete m_kernel; +} + +double +ConstantQ::getMinFrequency() const +{ + return m_p.minFrequency / pow(2.0, m_octaves - 1); +} + +double +ConstantQ::getBinFrequency(int bin) const +{ + return getMinFrequency() * pow(2, (double(bin) / getBinsPerOctave())); +} + +void +ConstantQ::initialise() +{ + m_octaves = int(ceil(log2(m_maxFrequency / m_minFrequency))); + m_kernel = new CQKernel(m_sampleRate, m_maxFrequency, m_binsPerOctave); + m_p = m_kernel->getProperties(); + + // Use exact powers of two for resampling rates. They don't have + // to be related to our actual samplerate: the resampler only + // cares about the ratio, but it only accepts integer source and + // target rates, and if we start from the actual samplerate we + // risk getting non-integer rates for lower octaves + + int sourceRate = pow(2, m_octaves); + vector<int> latencies; + + // top octave, no resampling + latencies.push_back(0); + m_decimators.push_back(0); + + for (int i = 1; i < m_octaves; ++i) { + + int factor = pow(2, i); + + Resampler *r = new Resampler + (sourceRate, sourceRate / factor, 50, 0.05); + +#ifdef DEBUG_CQ + cerr << "forward: octave " << i << ": resample from " << sourceRate << " to " << sourceRate / factor << endl; +#endif + + // We need to adapt the latencies so as to get the first input + // sample to be aligned, in time, at the decimator output + // across all octaves. + // + // Our decimator uses a linear phase filter, but being causal + // it is not zero phase: it has a latency that depends on the + // decimation factor. Those latencies have been calculated + // per-octave and are available to us in the latencies + // array. Left to its own devices, the first input sample will + // appear at output sample 0 in the highest octave (where no + // decimation is needed), sample number latencies[1] in the + // next octave down, latencies[2] in the next one, etc. We get + // to apply some artificial per-octave latency after the + // decimator in the processing chain, in order to compensate + // for the differing latencies associated with different + // decimation factors. How much should we insert? + // + // The outputs of the decimators are at different rates (in + // terms of the relation between clock time and samples) and + // we want them aligned in terms of time. So, for example, a + // latency of 10 samples with a decimation factor of 2 is + // equivalent to a latency of 20 with no decimation -- they + // both result in the first output sample happening at the + // same equivalent time in milliseconds. + // + // So here we record the latency added by the decimator, in + // terms of the sample rate of the undecimated signal. Then we + // use that to compensate in a moment, when we've discovered + // what the longest latency across all octaves is. + + latencies.push_back(r->getLatency() * factor); + m_decimators.push_back(r); + } + + m_bigBlockSize = m_p.fftSize * pow(2, m_octaves - 1); + + // Now add in the extra padding and compensate for hops that must + // be dropped in order to align the atom centres across + // octaves. Again this is a bit trickier because we are doing it + // at input rather than output and so must work in per-octave + // sample rates rather than output blocks + + int emptyHops = m_p.firstCentre / m_p.atomSpacing; + + vector<int> drops; + for (int i = 0; i < m_octaves; ++i) { + int factor = pow(2, i); + int dropHops = emptyHops * pow(2, m_octaves - i - 1) - emptyHops; + int drop = ((dropHops * m_p.fftHop) * factor) / m_p.atomsPerFrame; + drops.push_back(drop); + } + + int maxLatPlusDrop = 0; + for (int i = 0; i < m_octaves; ++i) { + int latPlusDrop = latencies[i] + drops[i]; + if (latPlusDrop > maxLatPlusDrop) maxLatPlusDrop = latPlusDrop; + } + + int totalLatency = maxLatPlusDrop; + + int lat0 = totalLatency - latencies[0] - drops[0]; + totalLatency = ceil(double(lat0 / m_p.fftHop) * m_p.fftHop) + + latencies[0] + drops[0]; + + // We want (totalLatency - latencies[i]) to be a multiple of 2^i + // for each octave i, so that we do not end up with fractional + // octave latencies below. In theory this is hard, in practice if + // we ensure it for the last octave we should be OK. + double finalOctLat = latencies[m_octaves-1]; + double finalOctFact = pow(2, m_octaves-1); + totalLatency = + int(round(finalOctLat + + finalOctFact * + ceil((totalLatency - finalOctLat) / finalOctFact))); + +#ifdef DEBUG_CQ + cerr << "total latency = " << totalLatency << endl; +#endif + + // Padding as in the reference (will be introduced with the + // latency compensation in the loop below) + m_outputLatency = totalLatency + m_bigBlockSize + - m_p.firstCentre * pow(2, m_octaves-1); + +#ifdef DEBUG_CQ + cerr << "m_bigBlockSize = " << m_bigBlockSize << ", firstCentre = " + << m_p.firstCentre << ", m_octaves = " << m_octaves + << ", so m_outputLatency = " << m_outputLatency << endl; +#endif + + for (int i = 0; i < m_octaves; ++i) { + + double factor = pow(2, i); + + // Calculate the difference between the total latency applied + // across all octaves, and the existing latency due to the + // decimator for this octave, and then convert it back into + // the sample rate appropriate for the output latency of this + // decimator -- including one additional big block of padding + // (as in the reference). + + double octaveLatency = + double(totalLatency - latencies[i] - drops[i] + + m_bigBlockSize) / factor; + +#ifdef DEBUG_CQ + cerr << "octave " << i << ": resampler latency = " << latencies[i] + << ", drop " << drops[i] << " (/factor = " << drops[i]/factor + << "), octaveLatency = " << octaveLatency << " -> " + << int(round(octaveLatency)) << " (diff * factor = " + << (octaveLatency - round(octaveLatency)) << " * " + << factor << " = " + << (octaveLatency - round(octaveLatency)) * factor << ")" << endl; + + cerr << "double(" << totalLatency << " - " + << latencies[i] << " - " << drops[i] << " + " + << m_bigBlockSize << ") / " << factor << " = " + << octaveLatency << endl; +#endif + + m_buffers.push_back + (RealSequence(int(round(octaveLatency)), 0.0)); + } + + m_fft = new FFTReal(m_p.fftSize); +} + +ConstantQ::ComplexBlock +ConstantQ::process(const RealSequence &td) +{ + m_buffers[0].insert(m_buffers[0].end(), td.begin(), td.end()); + + for (int i = 1; i < m_octaves; ++i) { + RealSequence dec = m_decimators[i]->process(td.data(), td.size()); + m_buffers[i].insert(m_buffers[i].end(), dec.begin(), dec.end()); + } + + ComplexBlock out; + + while (true) { + + // We could have quite different remaining sample counts in + // different octaves, because (apart from the predictable + // added counts for decimator output on each block) we also + // have variable additional latency per octave + bool enough = true; + for (int i = 0; i < m_octaves; ++i) { + int required = m_p.fftSize * pow(2, m_octaves - i - 1); + if ((int)m_buffers[i].size() < required) { + enough = false; + } + } + if (!enough) break; + + int base = out.size(); + int totalColumns = pow(2, m_octaves - 1) * m_p.atomsPerFrame; + for (int i = 0; i < totalColumns; ++i) { + out.push_back(ComplexColumn()); + } + + for (int octave = 0; octave < m_octaves; ++octave) { + + int blocksThisOctave = pow(2, (m_octaves - octave - 1)); + + for (int b = 0; b < blocksThisOctave; ++b) { + ComplexBlock block = processOctaveBlock(octave); + + for (int j = 0; j < m_p.atomsPerFrame; ++j) { + + int target = base + + (b * (totalColumns / blocksThisOctave) + + (j * ((totalColumns / blocksThisOctave) / + m_p.atomsPerFrame))); + + while (int(out[target].size()) < + m_p.binsPerOctave * (octave + 1)) { + out[target].push_back(Complex()); + } + + for (int i = 0; i < m_p.binsPerOctave; ++i) { + out[target][m_p.binsPerOctave * octave + i] = + block[j][m_p.binsPerOctave - i - 1]; + } + } + } + } + } + + return out; +} + +ConstantQ::ComplexBlock +ConstantQ::getRemainingOutput() +{ + // Same as padding added at start, though rounded up + int pad = ceil(double(m_outputLatency) / m_bigBlockSize) * m_bigBlockSize; + RealSequence zeros(pad, 0.0); + return process(zeros); +} + +ConstantQ::ComplexBlock +ConstantQ::processOctaveBlock(int octave) +{ + RealSequence ro(m_p.fftSize, 0.0); + RealSequence io(m_p.fftSize, 0.0); + + m_fft->forward(m_buffers[octave].data(), ro.data(), io.data()); + + RealSequence shifted; + shifted.insert(shifted.end(), + m_buffers[octave].begin() + m_p.fftHop, + m_buffers[octave].end()); + m_buffers[octave] = shifted; + + ComplexSequence cv; + for (int i = 0; i < m_p.fftSize; ++i) { + cv.push_back(Complex(ro[i], io[i])); + } + + ComplexSequence cqrowvec = m_kernel->processForward(cv); + + // Reform into a column matrix + ComplexBlock cqblock; + for (int j = 0; j < m_p.atomsPerFrame; ++j) { + cqblock.push_back(ComplexColumn()); + for (int i = 0; i < m_p.binsPerOctave; ++i) { + cqblock[j].push_back(cqrowvec[i * m_p.atomsPerFrame + j]); + } + } + + return cqblock; +} + +