Mercurial > hg > constant-q-cpp
comparison src/ConstantQ.cpp @ 116:6deec2a51d13
Moving to standalone library layout
author | Chris Cannam <c.cannam@qmul.ac.uk> |
---|---|
date | Thu, 15 May 2014 12:04:00 +0100 |
parents | |
children | 2375457f2876 |
comparison
equal
deleted
inserted
replaced
115:93be4aa255e5 | 116:6deec2a51d13 |
---|---|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ | |
2 /* | |
3 Constant-Q library | |
4 Copyright (c) 2013-2014 Queen Mary, University of London | |
5 | |
6 Permission is hereby granted, free of charge, to any person | |
7 obtaining a copy of this software and associated documentation | |
8 files (the "Software"), to deal in the Software without | |
9 restriction, including without limitation the rights to use, copy, | |
10 modify, merge, publish, distribute, sublicense, and/or sell copies | |
11 of the Software, and to permit persons to whom the Software is | |
12 furnished to do so, subject to the following conditions: | |
13 | |
14 The above copyright notice and this permission notice shall be | |
15 included in all copies or substantial portions of the Software. | |
16 | |
17 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |
18 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |
19 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |
20 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | |
21 CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF | |
22 CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION | |
23 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
24 | |
25 Except as contained in this notice, the names of the Centre for | |
26 Digital Music; Queen Mary, University of London; and Chris Cannam | |
27 shall not be used in advertising or otherwise to promote the sale, | |
28 use or other dealings in this Software without prior written | |
29 authorization. | |
30 */ | |
31 | |
32 #include "ConstantQ.h" | |
33 | |
34 #include "CQKernel.h" | |
35 | |
36 #include "dsp/rateconversion/Resampler.h" | |
37 #include "maths/MathUtilities.h" | |
38 #include "dsp/transforms/FFT.h" | |
39 | |
40 #include <algorithm> | |
41 #include <iostream> | |
42 #include <stdexcept> | |
43 | |
44 using std::vector; | |
45 using std::cerr; | |
46 using std::endl; | |
47 | |
48 //#define DEBUG_CQ 1 | |
49 | |
50 ConstantQ::ConstantQ(double sampleRate, | |
51 double minFreq, | |
52 double maxFreq, | |
53 int binsPerOctave) : | |
54 m_sampleRate(sampleRate), | |
55 m_maxFrequency(maxFreq), | |
56 m_minFrequency(minFreq), | |
57 m_binsPerOctave(binsPerOctave), | |
58 m_fft(0) | |
59 { | |
60 if (minFreq <= 0.0 || maxFreq <= 0.0) { | |
61 throw std::invalid_argument("Frequency extents must be positive"); | |
62 } | |
63 | |
64 initialise(); | |
65 } | |
66 | |
67 ConstantQ::~ConstantQ() | |
68 { | |
69 delete m_fft; | |
70 for (int i = 0; i < (int)m_decimators.size(); ++i) { | |
71 delete m_decimators[i]; | |
72 } | |
73 delete m_kernel; | |
74 } | |
75 | |
76 double | |
77 ConstantQ::getMinFrequency() const | |
78 { | |
79 return m_p.minFrequency / pow(2.0, m_octaves - 1); | |
80 } | |
81 | |
82 double | |
83 ConstantQ::getBinFrequency(int bin) const | |
84 { | |
85 return getMinFrequency() * pow(2, (double(bin) / getBinsPerOctave())); | |
86 } | |
87 | |
88 void | |
89 ConstantQ::initialise() | |
90 { | |
91 m_octaves = int(ceil(log2(m_maxFrequency / m_minFrequency))); | |
92 m_kernel = new CQKernel(m_sampleRate, m_maxFrequency, m_binsPerOctave); | |
93 m_p = m_kernel->getProperties(); | |
94 | |
95 // Use exact powers of two for resampling rates. They don't have | |
96 // to be related to our actual samplerate: the resampler only | |
97 // cares about the ratio, but it only accepts integer source and | |
98 // target rates, and if we start from the actual samplerate we | |
99 // risk getting non-integer rates for lower octaves | |
100 | |
101 int sourceRate = pow(2, m_octaves); | |
102 vector<int> latencies; | |
103 | |
104 // top octave, no resampling | |
105 latencies.push_back(0); | |
106 m_decimators.push_back(0); | |
107 | |
108 for (int i = 1; i < m_octaves; ++i) { | |
109 | |
110 int factor = pow(2, i); | |
111 | |
112 Resampler *r = new Resampler | |
113 (sourceRate, sourceRate / factor, 50, 0.05); | |
114 | |
115 #ifdef DEBUG_CQ | |
116 cerr << "forward: octave " << i << ": resample from " << sourceRate << " to " << sourceRate / factor << endl; | |
117 #endif | |
118 | |
119 // We need to adapt the latencies so as to get the first input | |
120 // sample to be aligned, in time, at the decimator output | |
121 // across all octaves. | |
122 // | |
123 // Our decimator uses a linear phase filter, but being causal | |
124 // it is not zero phase: it has a latency that depends on the | |
125 // decimation factor. Those latencies have been calculated | |
126 // per-octave and are available to us in the latencies | |
127 // array. Left to its own devices, the first input sample will | |
128 // appear at output sample 0 in the highest octave (where no | |
129 // decimation is needed), sample number latencies[1] in the | |
130 // next octave down, latencies[2] in the next one, etc. We get | |
131 // to apply some artificial per-octave latency after the | |
132 // decimator in the processing chain, in order to compensate | |
133 // for the differing latencies associated with different | |
134 // decimation factors. How much should we insert? | |
135 // | |
136 // The outputs of the decimators are at different rates (in | |
137 // terms of the relation between clock time and samples) and | |
138 // we want them aligned in terms of time. So, for example, a | |
139 // latency of 10 samples with a decimation factor of 2 is | |
140 // equivalent to a latency of 20 with no decimation -- they | |
141 // both result in the first output sample happening at the | |
142 // same equivalent time in milliseconds. | |
143 // | |
144 // So here we record the latency added by the decimator, in | |
145 // terms of the sample rate of the undecimated signal. Then we | |
146 // use that to compensate in a moment, when we've discovered | |
147 // what the longest latency across all octaves is. | |
148 | |
149 latencies.push_back(r->getLatency() * factor); | |
150 m_decimators.push_back(r); | |
151 } | |
152 | |
153 m_bigBlockSize = m_p.fftSize * pow(2, m_octaves - 1); | |
154 | |
155 // Now add in the extra padding and compensate for hops that must | |
156 // be dropped in order to align the atom centres across | |
157 // octaves. Again this is a bit trickier because we are doing it | |
158 // at input rather than output and so must work in per-octave | |
159 // sample rates rather than output blocks | |
160 | |
161 int emptyHops = m_p.firstCentre / m_p.atomSpacing; | |
162 | |
163 vector<int> drops; | |
164 for (int i = 0; i < m_octaves; ++i) { | |
165 int factor = pow(2, i); | |
166 int dropHops = emptyHops * pow(2, m_octaves - i - 1) - emptyHops; | |
167 int drop = ((dropHops * m_p.fftHop) * factor) / m_p.atomsPerFrame; | |
168 drops.push_back(drop); | |
169 } | |
170 | |
171 int maxLatPlusDrop = 0; | |
172 for (int i = 0; i < m_octaves; ++i) { | |
173 int latPlusDrop = latencies[i] + drops[i]; | |
174 if (latPlusDrop > maxLatPlusDrop) maxLatPlusDrop = latPlusDrop; | |
175 } | |
176 | |
177 int totalLatency = maxLatPlusDrop; | |
178 | |
179 int lat0 = totalLatency - latencies[0] - drops[0]; | |
180 totalLatency = ceil(double(lat0 / m_p.fftHop) * m_p.fftHop) | |
181 + latencies[0] + drops[0]; | |
182 | |
183 // We want (totalLatency - latencies[i]) to be a multiple of 2^i | |
184 // for each octave i, so that we do not end up with fractional | |
185 // octave latencies below. In theory this is hard, in practice if | |
186 // we ensure it for the last octave we should be OK. | |
187 double finalOctLat = latencies[m_octaves-1]; | |
188 double finalOctFact = pow(2, m_octaves-1); | |
189 totalLatency = | |
190 int(round(finalOctLat + | |
191 finalOctFact * | |
192 ceil((totalLatency - finalOctLat) / finalOctFact))); | |
193 | |
194 #ifdef DEBUG_CQ | |
195 cerr << "total latency = " << totalLatency << endl; | |
196 #endif | |
197 | |
198 // Padding as in the reference (will be introduced with the | |
199 // latency compensation in the loop below) | |
200 m_outputLatency = totalLatency + m_bigBlockSize | |
201 - m_p.firstCentre * pow(2, m_octaves-1); | |
202 | |
203 #ifdef DEBUG_CQ | |
204 cerr << "m_bigBlockSize = " << m_bigBlockSize << ", firstCentre = " | |
205 << m_p.firstCentre << ", m_octaves = " << m_octaves | |
206 << ", so m_outputLatency = " << m_outputLatency << endl; | |
207 #endif | |
208 | |
209 for (int i = 0; i < m_octaves; ++i) { | |
210 | |
211 double factor = pow(2, i); | |
212 | |
213 // Calculate the difference between the total latency applied | |
214 // across all octaves, and the existing latency due to the | |
215 // decimator for this octave, and then convert it back into | |
216 // the sample rate appropriate for the output latency of this | |
217 // decimator -- including one additional big block of padding | |
218 // (as in the reference). | |
219 | |
220 double octaveLatency = | |
221 double(totalLatency - latencies[i] - drops[i] | |
222 + m_bigBlockSize) / factor; | |
223 | |
224 #ifdef DEBUG_CQ | |
225 cerr << "octave " << i << ": resampler latency = " << latencies[i] | |
226 << ", drop " << drops[i] << " (/factor = " << drops[i]/factor | |
227 << "), octaveLatency = " << octaveLatency << " -> " | |
228 << int(round(octaveLatency)) << " (diff * factor = " | |
229 << (octaveLatency - round(octaveLatency)) << " * " | |
230 << factor << " = " | |
231 << (octaveLatency - round(octaveLatency)) * factor << ")" << endl; | |
232 | |
233 cerr << "double(" << totalLatency << " - " | |
234 << latencies[i] << " - " << drops[i] << " + " | |
235 << m_bigBlockSize << ") / " << factor << " = " | |
236 << octaveLatency << endl; | |
237 #endif | |
238 | |
239 m_buffers.push_back | |
240 (RealSequence(int(round(octaveLatency)), 0.0)); | |
241 } | |
242 | |
243 m_fft = new FFTReal(m_p.fftSize); | |
244 } | |
245 | |
246 ConstantQ::ComplexBlock | |
247 ConstantQ::process(const RealSequence &td) | |
248 { | |
249 m_buffers[0].insert(m_buffers[0].end(), td.begin(), td.end()); | |
250 | |
251 for (int i = 1; i < m_octaves; ++i) { | |
252 RealSequence dec = m_decimators[i]->process(td.data(), td.size()); | |
253 m_buffers[i].insert(m_buffers[i].end(), dec.begin(), dec.end()); | |
254 } | |
255 | |
256 ComplexBlock out; | |
257 | |
258 while (true) { | |
259 | |
260 // We could have quite different remaining sample counts in | |
261 // different octaves, because (apart from the predictable | |
262 // added counts for decimator output on each block) we also | |
263 // have variable additional latency per octave | |
264 bool enough = true; | |
265 for (int i = 0; i < m_octaves; ++i) { | |
266 int required = m_p.fftSize * pow(2, m_octaves - i - 1); | |
267 if ((int)m_buffers[i].size() < required) { | |
268 enough = false; | |
269 } | |
270 } | |
271 if (!enough) break; | |
272 | |
273 int base = out.size(); | |
274 int totalColumns = pow(2, m_octaves - 1) * m_p.atomsPerFrame; | |
275 for (int i = 0; i < totalColumns; ++i) { | |
276 out.push_back(ComplexColumn()); | |
277 } | |
278 | |
279 for (int octave = 0; octave < m_octaves; ++octave) { | |
280 | |
281 int blocksThisOctave = pow(2, (m_octaves - octave - 1)); | |
282 | |
283 for (int b = 0; b < blocksThisOctave; ++b) { | |
284 ComplexBlock block = processOctaveBlock(octave); | |
285 | |
286 for (int j = 0; j < m_p.atomsPerFrame; ++j) { | |
287 | |
288 int target = base + | |
289 (b * (totalColumns / blocksThisOctave) + | |
290 (j * ((totalColumns / blocksThisOctave) / | |
291 m_p.atomsPerFrame))); | |
292 | |
293 while (int(out[target].size()) < | |
294 m_p.binsPerOctave * (octave + 1)) { | |
295 out[target].push_back(Complex()); | |
296 } | |
297 | |
298 for (int i = 0; i < m_p.binsPerOctave; ++i) { | |
299 out[target][m_p.binsPerOctave * octave + i] = | |
300 block[j][m_p.binsPerOctave - i - 1]; | |
301 } | |
302 } | |
303 } | |
304 } | |
305 } | |
306 | |
307 return out; | |
308 } | |
309 | |
310 ConstantQ::ComplexBlock | |
311 ConstantQ::getRemainingOutput() | |
312 { | |
313 // Same as padding added at start, though rounded up | |
314 int pad = ceil(double(m_outputLatency) / m_bigBlockSize) * m_bigBlockSize; | |
315 RealSequence zeros(pad, 0.0); | |
316 return process(zeros); | |
317 } | |
318 | |
319 ConstantQ::ComplexBlock | |
320 ConstantQ::processOctaveBlock(int octave) | |
321 { | |
322 RealSequence ro(m_p.fftSize, 0.0); | |
323 RealSequence io(m_p.fftSize, 0.0); | |
324 | |
325 m_fft->forward(m_buffers[octave].data(), ro.data(), io.data()); | |
326 | |
327 RealSequence shifted; | |
328 shifted.insert(shifted.end(), | |
329 m_buffers[octave].begin() + m_p.fftHop, | |
330 m_buffers[octave].end()); | |
331 m_buffers[octave] = shifted; | |
332 | |
333 ComplexSequence cv; | |
334 for (int i = 0; i < m_p.fftSize; ++i) { | |
335 cv.push_back(Complex(ro[i], io[i])); | |
336 } | |
337 | |
338 ComplexSequence cqrowvec = m_kernel->processForward(cv); | |
339 | |
340 // Reform into a column matrix | |
341 ComplexBlock cqblock; | |
342 for (int j = 0; j < m_p.atomsPerFrame; ++j) { | |
343 cqblock.push_back(ComplexColumn()); | |
344 for (int i = 0; i < m_p.binsPerOctave; ++i) { | |
345 cqblock[j].push_back(cqrowvec[i * m_p.atomsPerFrame + j]); | |
346 } | |
347 } | |
348 | |
349 return cqblock; | |
350 } | |
351 | |
352 |