c@116
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
c@116
|
2 /*
|
c@116
|
3 Constant-Q library
|
c@116
|
4 Copyright (c) 2013-2014 Queen Mary, University of London
|
c@116
|
5
|
c@116
|
6 Permission is hereby granted, free of charge, to any person
|
c@116
|
7 obtaining a copy of this software and associated documentation
|
c@116
|
8 files (the "Software"), to deal in the Software without
|
c@116
|
9 restriction, including without limitation the rights to use, copy,
|
c@116
|
10 modify, merge, publish, distribute, sublicense, and/or sell copies
|
c@116
|
11 of the Software, and to permit persons to whom the Software is
|
c@116
|
12 furnished to do so, subject to the following conditions:
|
c@116
|
13
|
c@116
|
14 The above copyright notice and this permission notice shall be
|
c@116
|
15 included in all copies or substantial portions of the Software.
|
c@116
|
16
|
c@116
|
17 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
c@116
|
18 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
c@116
|
19 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
c@116
|
20 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
c@116
|
21 CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
|
c@116
|
22 CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
c@116
|
23 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
c@116
|
24
|
c@116
|
25 Except as contained in this notice, the names of the Centre for
|
c@116
|
26 Digital Music; Queen Mary, University of London; and Chris Cannam
|
c@116
|
27 shall not be used in advertising or otherwise to promote the sale,
|
c@116
|
28 use or other dealings in this Software without prior written
|
c@116
|
29 authorization.
|
c@116
|
30 */
|
c@116
|
31
|
c@116
|
32 #include "CQInverse.h"
|
c@116
|
33
|
c@121
|
34 #include "dsp/Resampler.h"
|
c@121
|
35 #include "dsp/MathUtilities.h"
|
c@121
|
36 #include "dsp/FFT.h"
|
c@116
|
37
|
c@116
|
38 #include <algorithm>
|
c@116
|
39 #include <iostream>
|
c@116
|
40 #include <stdexcept>
|
c@116
|
41
|
c@116
|
42 using std::vector;
|
c@116
|
43 using std::cerr;
|
c@116
|
44 using std::endl;
|
c@116
|
45
|
c@116
|
46 //#define DEBUG_CQ 1
|
c@116
|
47
|
c@127
|
48 CQInverse::CQInverse(CQParameters params) :
|
c@127
|
49 m_inparams(params),
|
c@127
|
50 m_sampleRate(params.sampleRate),
|
c@127
|
51 m_maxFrequency(params.maxFrequency),
|
c@127
|
52 m_minFrequency(params.minFrequency),
|
c@127
|
53 m_binsPerOctave(params.binsPerOctave),
|
c@116
|
54 m_fft(0)
|
c@116
|
55 {
|
c@127
|
56 if (m_minFrequency <= 0.0 || m_maxFrequency <= 0.0) {
|
c@116
|
57 throw std::invalid_argument("Frequency extents must be positive");
|
c@116
|
58 }
|
c@116
|
59
|
c@116
|
60 initialise();
|
c@116
|
61 }
|
c@116
|
62
|
c@116
|
63 CQInverse::~CQInverse()
|
c@116
|
64 {
|
c@116
|
65 delete m_fft;
|
c@116
|
66 for (int i = 0; i < (int)m_upsamplers.size(); ++i) {
|
c@116
|
67 delete m_upsamplers[i];
|
c@116
|
68 }
|
c@116
|
69 delete m_kernel;
|
c@116
|
70 }
|
c@116
|
71
|
c@116
|
72 double
|
c@116
|
73 CQInverse::getMinFrequency() const
|
c@116
|
74 {
|
c@116
|
75 return m_p.minFrequency / pow(2.0, m_octaves - 1);
|
c@116
|
76 }
|
c@116
|
77
|
c@116
|
78 double
|
c@116
|
79 CQInverse::getBinFrequency(int bin) const
|
c@116
|
80 {
|
c@116
|
81 return getMinFrequency() * pow(2, (double(bin) / getBinsPerOctave()));
|
c@116
|
82 }
|
c@116
|
83
|
c@116
|
84 void
|
c@116
|
85 CQInverse::initialise()
|
c@116
|
86 {
|
c@116
|
87 m_octaves = int(ceil(log2(m_maxFrequency / m_minFrequency)));
|
c@127
|
88 m_kernel = new CQKernel(m_inparams);
|
c@116
|
89 m_p = m_kernel->getProperties();
|
c@116
|
90
|
c@116
|
91 // Use exact powers of two for resampling rates. They don't have
|
c@116
|
92 // to be related to our actual samplerate: the resampler only
|
c@116
|
93 // cares about the ratio, but it only accepts integer source and
|
c@116
|
94 // target rates, and if we start from the actual samplerate we
|
c@116
|
95 // risk getting non-integer rates for lower octaves
|
c@116
|
96
|
c@116
|
97 int sourceRate = pow(2, m_octaves);
|
c@116
|
98 vector<int> latencies;
|
c@116
|
99
|
c@116
|
100 // top octave, no resampling
|
c@116
|
101 latencies.push_back(0);
|
c@116
|
102 m_upsamplers.push_back(0);
|
c@116
|
103
|
c@116
|
104 for (int i = 1; i < m_octaves; ++i) {
|
c@116
|
105
|
c@116
|
106 int factor = pow(2, i);
|
c@116
|
107
|
c@116
|
108 Resampler *r = new Resampler
|
c@116
|
109 (sourceRate / factor, sourceRate, 50, 0.05);
|
c@116
|
110
|
c@116
|
111 #ifdef DEBUG_CQ
|
c@116
|
112 cerr << "inverse: octave " << i << ": resample from " << sourceRate/factor << " to " << sourceRate << endl;
|
c@116
|
113 #endif
|
c@116
|
114
|
c@116
|
115 // See ConstantQ.cpp for discussion on latency -- output
|
c@116
|
116 // latency here is at target rate which, this way around, is
|
c@116
|
117 // what we want
|
c@116
|
118
|
c@116
|
119 latencies.push_back(r->getLatency());
|
c@116
|
120 m_upsamplers.push_back(r);
|
c@116
|
121 }
|
c@116
|
122
|
c@116
|
123 // additionally we will have fftHop latency at individual octave
|
c@116
|
124 // rate (before upsampling) for the overlap-add in each octave
|
c@116
|
125 for (int i = 0; i < m_octaves; ++i) {
|
c@116
|
126 latencies[i] += m_p.fftHop * pow(2, i);
|
c@116
|
127 }
|
c@116
|
128
|
c@116
|
129 // Now reverse the drop adjustment made in ConstantQ to align the
|
c@116
|
130 // atom centres across different octaves (but this time at output
|
c@116
|
131 // sample rate)
|
c@116
|
132
|
c@116
|
133 int emptyHops = m_p.firstCentre / m_p.atomSpacing;
|
c@116
|
134
|
c@116
|
135 vector<int> pushes;
|
c@116
|
136 for (int i = 0; i < m_octaves; ++i) {
|
c@116
|
137 int factor = pow(2, i);
|
c@116
|
138 int pushHops = emptyHops * pow(2, m_octaves - i - 1) - emptyHops;
|
c@116
|
139 int push = ((pushHops * m_p.fftHop) * factor) / m_p.atomsPerFrame;
|
c@116
|
140 pushes.push_back(push);
|
c@116
|
141 }
|
c@116
|
142
|
c@116
|
143 int maxLatLessPush = 0;
|
c@116
|
144 for (int i = 0; i < m_octaves; ++i) {
|
c@116
|
145 int latLessPush = latencies[i] - pushes[i];
|
c@116
|
146 if (latLessPush > maxLatLessPush) maxLatLessPush = latLessPush;
|
c@116
|
147 }
|
c@116
|
148
|
c@116
|
149 int totalLatency = maxLatLessPush + 10;
|
c@116
|
150 if (totalLatency < 0) totalLatency = 0;
|
c@116
|
151
|
c@116
|
152 m_outputLatency = totalLatency + m_p.firstCentre * pow(2, m_octaves-1);
|
c@116
|
153
|
c@116
|
154 #ifdef DEBUG_CQ
|
c@116
|
155 cerr << "totalLatency = " << totalLatency << ", m_outputLatency = " << m_outputLatency << endl;
|
c@116
|
156 #endif
|
c@116
|
157
|
c@116
|
158 for (int i = 0; i < m_octaves; ++i) {
|
c@116
|
159
|
c@116
|
160 // Calculate the difference between the total latency applied
|
c@116
|
161 // across all octaves, and the existing latency due to the
|
c@116
|
162 // upsampler for this octave.
|
c@116
|
163
|
c@116
|
164 int latencyPadding = totalLatency - latencies[i] + pushes[i];
|
c@116
|
165
|
c@116
|
166 #ifdef DEBUG_CQ
|
c@116
|
167 cerr << "octave " << i << ": push " << pushes[i] << ", resampler latency inc overlap space " << latencies[i] << ", latencyPadding = " << latencyPadding << " (/factor = " << latencyPadding / pow(2, i) << ")" << endl;
|
c@116
|
168 #endif
|
c@116
|
169
|
c@116
|
170 m_buffers.push_back(RealSequence(latencyPadding, 0.0));
|
c@116
|
171 }
|
c@116
|
172
|
c@116
|
173 for (int i = 0; i < m_octaves; ++i) {
|
c@116
|
174 // Fixed-size buffer for IFFT overlap-add
|
c@116
|
175 m_olaBufs.push_back(RealSequence(m_p.fftSize, 0.0));
|
c@116
|
176 }
|
c@116
|
177
|
c@116
|
178 m_fft = new FFTReal(m_p.fftSize);
|
c@116
|
179 }
|
c@116
|
180
|
c@116
|
181 CQInverse::RealSequence
|
c@116
|
182 CQInverse::process(const ComplexBlock &block)
|
c@116
|
183 {
|
c@116
|
184 // The input data is of the form produced by ConstantQ::process --
|
c@116
|
185 // an unknown number N of columns of varying height. We assert
|
c@116
|
186 // that N is a multiple of atomsPerFrame * 2^(octaves-1), as must
|
c@116
|
187 // be the case for data that came directly from our ConstantQ
|
c@116
|
188 // implementation.
|
c@116
|
189
|
c@116
|
190 int widthProvided = block.size();
|
c@116
|
191
|
c@116
|
192 if (widthProvided == 0) {
|
c@116
|
193 return drawFromBuffers();
|
c@116
|
194 }
|
c@116
|
195
|
c@116
|
196 int blockWidth = m_p.atomsPerFrame * int(pow(2, m_octaves - 1));
|
c@116
|
197
|
c@116
|
198 if (widthProvided % blockWidth != 0) {
|
c@116
|
199 cerr << "ERROR: CQInverse::process: Input block size ("
|
c@116
|
200 << widthProvided
|
c@116
|
201 << ") must be a multiple of processing block width "
|
c@116
|
202 << "(atoms-per-frame * 2^(octaves-1) = "
|
c@116
|
203 << m_p.atomsPerFrame << " * 2^(" << m_octaves << "-1) = "
|
c@116
|
204 << blockWidth << ")" << endl;
|
c@116
|
205 throw std::invalid_argument
|
c@116
|
206 ("Input block size must be a multiple of processing block width");
|
c@116
|
207 }
|
c@116
|
208
|
c@116
|
209 // Procedure:
|
c@116
|
210 //
|
c@116
|
211 // 1. Slice the list of columns into a set of lists of columns,
|
c@116
|
212 // one per octave, each of width N / (2^octave-1) and height
|
c@116
|
213 // binsPerOctave, containing the values present in that octave
|
c@116
|
214 //
|
c@116
|
215 // 2. Group each octave list by atomsPerFrame columns at a time,
|
c@116
|
216 // and stack these so as to achieve a list, for each octave, of
|
c@116
|
217 // taller columns of height binsPerOctave * atomsPerFrame
|
c@116
|
218 //
|
c@116
|
219 // 3. For each taller column, take the product with the inverse CQ
|
c@116
|
220 // kernel (which is the conjugate of the forward kernel) and
|
c@116
|
221 // perform an inverse FFT
|
c@116
|
222 //
|
c@116
|
223 // 4. Overlap-add each octave's resynthesised blocks (unwindowed)
|
c@116
|
224 //
|
c@116
|
225 // 5. Resample each octave's overlap-add stream to the original
|
c@116
|
226 // rate
|
c@116
|
227 //
|
c@116
|
228 // 6. Sum the resampled streams and return
|
c@116
|
229
|
c@116
|
230 for (int i = 0; i < m_octaves; ++i) {
|
c@116
|
231
|
c@116
|
232 // Step 1
|
c@116
|
233
|
c@116
|
234 ComplexBlock oct;
|
c@116
|
235
|
c@116
|
236 for (int j = 0; j < widthProvided; ++j) {
|
c@116
|
237 int h = block[j].size();
|
c@116
|
238 if (h < m_binsPerOctave * (i+1)) {
|
c@116
|
239 continue;
|
c@116
|
240 }
|
c@116
|
241 ComplexColumn col(block[j].begin() + m_binsPerOctave * i,
|
c@116
|
242 block[j].begin() + m_binsPerOctave * (i+1));
|
c@116
|
243 oct.push_back(col);
|
c@116
|
244 }
|
c@116
|
245
|
c@116
|
246 // Steps 2, 3, 4, 5
|
c@116
|
247 processOctave(i, oct);
|
c@116
|
248 }
|
c@116
|
249
|
c@116
|
250 // Step 6
|
c@116
|
251 return drawFromBuffers();
|
c@116
|
252 }
|
c@116
|
253
|
c@116
|
254 CQInverse::RealSequence
|
c@116
|
255 CQInverse::drawFromBuffers()
|
c@116
|
256 {
|
c@116
|
257 // 6. Sum the resampled streams and return
|
c@116
|
258
|
c@116
|
259 int available = 0;
|
c@116
|
260
|
c@116
|
261 for (int i = 0; i < m_octaves; ++i) {
|
c@116
|
262 if (i == 0 || int(m_buffers[i].size()) < available) {
|
c@116
|
263 available = m_buffers[i].size();
|
c@116
|
264 }
|
c@116
|
265 }
|
c@116
|
266
|
c@116
|
267 RealSequence result(available, 0);
|
c@116
|
268
|
c@116
|
269 if (available == 0) {
|
c@116
|
270 return result;
|
c@116
|
271 }
|
c@116
|
272
|
c@116
|
273 for (int i = 0; i < m_octaves; ++i) {
|
c@116
|
274 for (int j = 0; j < available; ++j) {
|
c@116
|
275 result[j] += m_buffers[i][j];
|
c@116
|
276 }
|
c@116
|
277 m_buffers[i] = RealSequence(m_buffers[i].begin() + available,
|
c@116
|
278 m_buffers[i].end());
|
c@116
|
279 }
|
c@116
|
280
|
c@116
|
281 return result;
|
c@116
|
282 }
|
c@116
|
283
|
c@116
|
284 CQInverse::RealSequence
|
c@116
|
285 CQInverse::getRemainingOutput()
|
c@116
|
286 {
|
c@116
|
287 for (int j = 0; j < m_octaves; ++j) {
|
c@116
|
288 int factor = pow(2, j);
|
c@116
|
289 int latency = (j > 0 ? m_upsamplers[j]->getLatency() : 0) / factor;
|
c@116
|
290 for (int i = 0; i < (latency + m_p.fftSize) / m_p.fftHop; ++i) {
|
c@116
|
291 overlapAddAndResample(j, RealSequence(m_olaBufs[j].size(), 0));
|
c@116
|
292 }
|
c@116
|
293 }
|
c@116
|
294
|
c@116
|
295 return drawFromBuffers();
|
c@116
|
296 }
|
c@116
|
297
|
c@116
|
298 void
|
c@116
|
299 CQInverse::processOctave(int octave, const ComplexBlock &columns)
|
c@116
|
300 {
|
c@116
|
301 // 2. Group each octave list by atomsPerFrame columns at a time,
|
c@116
|
302 // and stack these so as to achieve a list, for each octave, of
|
c@116
|
303 // taller columns of height binsPerOctave * atomsPerFrame
|
c@116
|
304
|
c@116
|
305 int ncols = columns.size();
|
c@116
|
306
|
c@116
|
307 if (ncols % m_p.atomsPerFrame != 0) {
|
c@116
|
308 cerr << "ERROR: CQInverse::process: Number of columns ("
|
c@116
|
309 << ncols
|
c@116
|
310 << ") in octave " << octave
|
c@116
|
311 << " must be a multiple of atoms-per-frame ("
|
c@116
|
312 << m_p.atomsPerFrame << ")" << endl;
|
c@116
|
313 throw std::invalid_argument
|
c@116
|
314 ("Columns in octave must be a multiple of atoms per frame");
|
c@116
|
315 }
|
c@116
|
316
|
c@116
|
317 for (int i = 0; i < ncols; i += m_p.atomsPerFrame) {
|
c@116
|
318
|
c@116
|
319 ComplexColumn tallcol;
|
c@116
|
320 for (int b = 0; b < m_binsPerOctave; ++b) {
|
c@116
|
321 for (int a = 0; a < m_p.atomsPerFrame; ++a) {
|
c@116
|
322 tallcol.push_back(columns[i + a][m_binsPerOctave - b - 1]);
|
c@116
|
323 }
|
c@116
|
324 }
|
c@116
|
325
|
c@116
|
326 processOctaveColumn(octave, tallcol);
|
c@116
|
327 }
|
c@116
|
328 }
|
c@116
|
329
|
c@116
|
330 void
|
c@116
|
331 CQInverse::processOctaveColumn(int octave, const ComplexColumn &column)
|
c@116
|
332 {
|
c@116
|
333 // 3. For each taller column, take the product with the inverse CQ
|
c@116
|
334 // kernel (which is the conjugate of the forward kernel) and
|
c@116
|
335 // perform an inverse FFT
|
c@116
|
336
|
c@116
|
337 if ((int)column.size() != m_p.atomsPerFrame * m_binsPerOctave) {
|
c@116
|
338 cerr << "ERROR: CQInverse::processOctaveColumn: Height of column ("
|
c@116
|
339 << column.size() << ") in octave " << octave
|
c@116
|
340 << " must be atoms-per-frame * bins-per-octave ("
|
c@116
|
341 << m_p.atomsPerFrame << " * " << m_binsPerOctave << " = "
|
c@116
|
342 << m_p.atomsPerFrame * m_binsPerOctave << ")" << endl;
|
c@116
|
343 throw std::invalid_argument
|
c@116
|
344 ("Column height must match atoms-per-frame * bins-per-octave");
|
c@116
|
345 }
|
c@116
|
346
|
c@116
|
347 ComplexSequence transformed = m_kernel->processInverse(column);
|
c@116
|
348
|
c@116
|
349 int halfLen = m_p.fftSize/2 + 1;
|
c@116
|
350
|
c@116
|
351 RealSequence ri(halfLen, 0);
|
c@116
|
352 RealSequence ii(halfLen, 0);
|
c@116
|
353
|
c@116
|
354 for (int i = 0; i < halfLen; ++i) {
|
c@116
|
355 ri[i] = transformed[i].real();
|
c@116
|
356 ii[i] = transformed[i].imag();
|
c@116
|
357 }
|
c@116
|
358
|
c@116
|
359 RealSequence timeDomain(m_p.fftSize, 0);
|
c@116
|
360
|
c@116
|
361 m_fft->inverse(ri.data(), ii.data(), timeDomain.data());
|
c@116
|
362
|
c@116
|
363 overlapAddAndResample(octave, timeDomain);
|
c@116
|
364 }
|
c@116
|
365
|
c@116
|
366 void
|
c@116
|
367 CQInverse::overlapAddAndResample(int octave, const RealSequence &seq)
|
c@116
|
368 {
|
c@116
|
369 // 4. Overlap-add each octave's resynthesised blocks (unwindowed)
|
c@116
|
370 //
|
c@116
|
371 // and
|
c@116
|
372 //
|
c@116
|
373 // 5. Resample each octave's overlap-add stream to the original
|
c@116
|
374 // rate
|
c@116
|
375
|
c@116
|
376 if (seq.size() != m_olaBufs[octave].size()) {
|
c@116
|
377 cerr << "ERROR: CQInverse::overlapAdd: input sequence length ("
|
c@116
|
378 << seq.size() << ") is expected to match OLA buffer size ("
|
c@116
|
379 << m_olaBufs[octave].size() << ")" << endl;
|
c@116
|
380 throw std::invalid_argument
|
c@116
|
381 ("Input sequence length should match OLA buffer size");
|
c@116
|
382 }
|
c@116
|
383
|
c@116
|
384 RealSequence toResample(m_olaBufs[octave].begin(),
|
c@116
|
385 m_olaBufs[octave].begin() + m_p.fftHop);
|
c@116
|
386
|
c@116
|
387 RealSequence resampled =
|
c@116
|
388 octave > 0 ?
|
c@116
|
389 m_upsamplers[octave]->process(toResample.data(), toResample.size()) :
|
c@116
|
390 toResample;
|
c@116
|
391
|
c@116
|
392 m_buffers[octave].insert(m_buffers[octave].end(),
|
c@116
|
393 resampled.begin(),
|
c@116
|
394 resampled.end());
|
c@116
|
395
|
c@116
|
396 m_olaBufs[octave] = RealSequence(m_olaBufs[octave].begin() + m_p.fftHop,
|
c@116
|
397 m_olaBufs[octave].end());
|
c@116
|
398
|
c@116
|
399 RealSequence pad(m_p.fftHop, 0);
|
c@116
|
400
|
c@116
|
401 m_olaBufs[octave].insert(m_olaBufs[octave].end(),
|
c@116
|
402 pad.begin(),
|
c@116
|
403 pad.end());
|
c@116
|
404
|
c@116
|
405 for (int i = 0; i < m_p.fftSize; ++i) {
|
c@116
|
406 m_olaBufs[octave][i] += seq[i];
|
c@116
|
407 }
|
c@116
|
408 }
|
c@116
|
409
|