c@10
|
1
|
c@19
|
2 program cqt;
|
c@10
|
3
|
c@10
|
4 cqtkernel = load cqtkernel;
|
c@10
|
5 resample = load may.stream.resample;
|
c@10
|
6 manipulate = load may.stream.manipulate;
|
c@10
|
7 syn = load may.stream.syntheticstream;
|
c@10
|
8 cm = load may.matrix.complex;
|
c@10
|
9 mat = load may.matrix;
|
c@10
|
10 framer = load may.stream.framer;
|
c@10
|
11 cplx = load may.complex;
|
c@10
|
12 fft = load may.transform.fft;
|
c@10
|
13 vec = load may.vector;
|
c@17
|
14 af = load may.stream.audiofile;
|
c@22
|
15 plot = load may.plot;
|
c@10
|
16
|
c@10
|
17 { pow, round, floor, ceil, log2, nextPowerOfTwo } = load may.mathmisc;
|
c@10
|
18
|
c@10
|
19 cqt str =
|
c@10
|
20 (sampleRate = str.sampleRate;
|
c@10
|
21 maxFreq = sampleRate/2;
|
c@22
|
22 minFreq = 50;
|
c@10
|
23 binsPerOctave = 24;
|
c@10
|
24
|
c@16
|
25 eprintln "Here";
|
c@10
|
26
|
c@10
|
27 octaves = ceil (log2 (maxFreq / minFreq));
|
c@10
|
28
|
c@16
|
29 eprintln "Here: about to calculate stuff with \(octaves)";
|
c@10
|
30
|
c@10
|
31 actualMinFreq = (maxFreq / (pow 2 octaves)) * (pow 2 (1/binsPerOctave));
|
c@10
|
32
|
c@16
|
33 eprintln "sampleRate = \(sampleRate), maxFreq = \(maxFreq), minFreq = \(minFreq), actualMinFreq = \(actualMinFreq), octaves = \(octaves), binsPerOctave = \(binsPerOctave)";
|
c@10
|
34
|
c@10
|
35 kdata = cqtkernel.makeKernel { sampleRate, maxFreq, binsPerOctave };
|
c@10
|
36
|
c@16
|
37 eprintln "atomsPerFrame = \(kdata.atomsPerFrame)";
|
c@11
|
38
|
c@10
|
39 streams = manipulate.duplicated octaves str;
|
c@10
|
40
|
c@10
|
41 //!!! can't be right!
|
c@10
|
42 kernel = cm.transposed (cm.conjugateTransposed kdata.kernel);
|
c@10
|
43
|
c@16
|
44 eprintln "have kernel";
|
c@10
|
45
|
c@10
|
46 fftFunc = fft.forward kdata.fftSize;
|
c@10
|
47
|
c@10
|
48 cqblocks =
|
c@10
|
49 map do octave:
|
c@10
|
50 frames = framer.monoFrames //!!! mono for now
|
c@10
|
51 { framesize = kdata.fftSize, hop = kdata.fftHop }
|
c@10
|
52 (resample.decimated (pow 2 octave) streams[octave]);
|
c@10
|
53 map do frame:
|
c@10
|
54 freq = fftFunc (cplx.complexArray frame (vec.zeros kdata.fftSize));
|
c@10
|
55 cm.product kernel (cm.newComplexColumnVector freq);
|
c@10
|
56 done frames;
|
c@10
|
57 done [0..octaves-1];
|
c@10
|
58
|
c@13
|
59 // The cqblocks list is a list<list<matrix>>. Each top-level list
|
c@11
|
60 // corresponds to an octave, from highest to lowest, each having
|
c@11
|
61 // twice as many elements in its list as the next octave. The
|
c@11
|
62 // sub-lists are sampled in time with an effective spacing of
|
c@11
|
63 // fftSize * 2^(octave-1) audio frames, and the matrices are row
|
c@11
|
64 // vectors with atomsPerFrame * binsPerOctave complex elements.
|
c@13
|
65 //
|
c@13
|
66 // ***
|
c@13
|
67 //
|
c@13
|
68 // In a typical constant-Q structure, each (2^(octaves-1) *
|
c@13
|
69 // fftHop) input frames gives us an output structure conceptually
|
c@13
|
70 // like this:
|
c@10
|
71 //
|
c@10
|
72 // [][][][][][][][] <- fftHop frames per highest-octave output value
|
c@10
|
73 // [][][][][][][][] layered as many times as binsPerOctave (here 2)
|
c@10
|
74 // [--][--][--][--] <- fftHop*2 frames for the next lower octave
|
c@10
|
75 // [--][--][--][--] etc
|
c@10
|
76 // [------][------]
|
c@10
|
77 // [------][------]
|
c@10
|
78 // [--------------]
|
c@10
|
79 // [--------------]
|
c@10
|
80 //
|
c@13
|
81 // ***
|
c@13
|
82 //
|
c@13
|
83 // But the kernel we're using here has more than one temporally
|
c@13
|
84 // spaced atom; each individual cell is a row vector with
|
c@13
|
85 // atomsPerFrame * binsPerOctave elements, but that actually
|
c@13
|
86 // represents a rectangular matrix of result cells with width
|
c@13
|
87 // atomsPerFrame and height binsPerOctave. The columns of this
|
c@13
|
88 // matrix (the atoms) then need to be spaced by 2^(octave-1)
|
c@13
|
89 // relative to those from the highest octave.
|
c@10
|
90
|
c@15
|
91 // Reshape each row vector into the appropriate rectangular matrix
|
c@21
|
92 // and split into single-atom columns
|
c@19
|
93
|
c@21
|
94 emptyHops = kdata.firstCentre / kdata.atomSpacing;
|
c@21
|
95 maxDrop = emptyHops * (pow 2 (octaves-1)) - emptyHops;
|
c@21
|
96 eprintln "maxDrop = \(maxDrop)";
|
c@21
|
97
|
c@21
|
98 cqblocks = map do octlist:
|
c@21
|
99 concat
|
c@21
|
100 (map do rv:
|
c@21
|
101 cm.asColumns
|
c@21
|
102 (cm.generate do row col:
|
c@21
|
103 cm.at rv ((row * kdata.atomsPerFrame) + col) 0
|
c@21
|
104 done {
|
c@21
|
105 rows = kdata.binsPerOctave,
|
c@21
|
106 columns = kdata.atomsPerFrame
|
c@21
|
107 })
|
c@21
|
108 done octlist)
|
c@21
|
109 done cqblocks;
|
c@21
|
110
|
c@21
|
111 cqblocks = array (map2 do octlist octave:
|
c@21
|
112 d = emptyHops * (pow 2 (octaves-octave)) - emptyHops;
|
c@22
|
113
|
c@22
|
114 d = 0; //!!!
|
c@22
|
115
|
c@21
|
116 eprintln "dropping \(d)";
|
c@21
|
117 drop d octlist;
|
c@21
|
118 done cqblocks [1..octaves]);
|
c@14
|
119
|
c@17
|
120 assembleBlock bits =
|
c@19
|
121 (eprintln "assembleBlock: structure of bits is:";
|
c@19
|
122 eprintln (map length bits);
|
c@19
|
123
|
c@19
|
124 rows = octaves * kdata.binsPerOctave;
|
c@19
|
125 columns = (pow 2 (octaves - 1)) * kdata.atomsPerFrame;
|
c@19
|
126
|
c@18
|
127 cm.generate do row col:
|
c@19
|
128
|
c@19
|
129 // bits structure: [1,2,4,8,...]
|
c@19
|
130
|
c@19
|
131 // each elt of bits is a list of the chunks that should
|
c@19
|
132 // make up this block in that octave (lowest octave first)
|
c@19
|
133
|
c@19
|
134 // each chunk has atomsPerFrame * binsPerOctave elts in it
|
c@19
|
135
|
c@19
|
136 // row is disposed with 0 at the top, highest octave (in
|
c@19
|
137 // both pitch and index into bits structure)
|
c@19
|
138
|
c@18
|
139 oct = int (row / binsPerOctave);
|
c@19
|
140 binNo = row % kdata.binsPerOctave;
|
c@21
|
141
|
c@19
|
142 chunks = pow 2 oct;
|
c@21
|
143 colsPerAtom = int (columns / (chunks * kdata.atomsPerFrame));
|
c@21
|
144 atomNo = int (col / colsPerAtom);
|
c@21
|
145 atomOffset = col % colsPerAtom;
|
c@18
|
146
|
c@22
|
147 if /*!!! atomOffset == 0 and */ atomNo < length bits[oct] then
|
c@21
|
148 bits[oct][atomNo][binNo];
|
c@20
|
149 else
|
c@20
|
150 cplx.zero
|
c@20
|
151 fi;
|
c@19
|
152
|
c@19
|
153 done { rows, columns };
|
c@19
|
154 );
|
c@15
|
155
|
c@17
|
156 processOctaveLists octs =
|
c@17
|
157 case octs[0] of
|
c@17
|
158 block::rest:
|
c@19
|
159 (toAssemble = array
|
c@19
|
160 (map do oct:
|
c@21
|
161 n = kdata.atomsPerFrame * pow 2 oct;
|
c@17
|
162 if not empty? octs[oct] then
|
c@19
|
163 forBlock = array (take n octs[oct]);
|
c@17
|
164 octs[oct] := drop n octs[oct];
|
c@17
|
165 forBlock
|
c@17
|
166 else
|
c@19
|
167 array []
|
c@17
|
168 fi
|
c@19
|
169 done (keys octs));
|
c@17
|
170 assembleBlock toAssemble :. \(processOctaveLists octs));
|
c@17
|
171 _: []
|
c@15
|
172 esac;
|
c@15
|
173
|
c@19
|
174 eprintln "cqblocks has \(length cqblocks) entries";
|
c@15
|
175
|
c@17
|
176 octaveLists = [:];
|
c@19
|
177
|
c@19
|
178 cqblocks = array cqblocks;
|
c@17
|
179 for [1..octaves] do oct:
|
c@17
|
180 octaveLists[octaves - oct] := cqblocks[oct-1];
|
c@17
|
181 done;
|
c@17
|
182 /*
|
c@17
|
183 \() (map2 do octlist octave:
|
c@17
|
184 println "oct \(octaves) - \(octave) = \(octaves - octave)";
|
c@17
|
185 octaveLists[octaves - octave] := octlist
|
c@17
|
186 done cqblocks [1..octaves]);
|
c@17
|
187 */
|
c@19
|
188 eprintln "octaveLists keys are: \(keys octaveLists)";
|
c@17
|
189
|
c@17
|
190 processOctaveLists octaveLists;
|
c@15
|
191
|
c@10
|
192 );
|
c@10
|
193
|
c@17
|
194 //testStream = manipulate.withDuration 96000 (syn.sinusoid 48000 500);
|
c@17
|
195 //testStream = manipulate.withDuration 96000 (syn.pulseTrain 48000 4);
|
c@21
|
196 testStream = af.open "sweep-48000.wav";
|
c@22
|
197 //testStream = af.open "sweep.wav";
|
c@10
|
198
|
c@16
|
199 eprintln "have test stream";
|
c@10
|
200
|
c@22
|
201 cq = cqt testStream;
|
c@22
|
202
|
c@22
|
203 for cq do c:
|
c@21
|
204 mm = cm.magnitudes c;
|
c@21
|
205 for (mat.asColumns mm) (println . strJoin "," . vec.list);
|
c@21
|
206 done;
|
c@10
|
207
|
c@25
|
208 bigM = mat.concatHorizontal (map cm.magnitudes cq);
|
c@22
|
209
|
c@22
|
210 //\() (plot.plot [Contour bigM]);
|
c@22
|
211
|
c@16
|
212 ()
|
c@16
|
213
|