c@119
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
c@119
|
2 /*
|
c@119
|
3 Constant-Q library
|
c@119
|
4 Copyright (c) 2013-2014 Queen Mary, University of London
|
c@119
|
5
|
c@119
|
6 Permission is hereby granted, free of charge, to any person
|
c@119
|
7 obtaining a copy of this software and associated documentation
|
c@119
|
8 files (the "Software"), to deal in the Software without
|
c@119
|
9 restriction, including without limitation the rights to use, copy,
|
c@119
|
10 modify, merge, publish, distribute, sublicense, and/or sell copies
|
c@119
|
11 of the Software, and to permit persons to whom the Software is
|
c@119
|
12 furnished to do so, subject to the following conditions:
|
c@119
|
13
|
c@119
|
14 The above copyright notice and this permission notice shall be
|
c@119
|
15 included in all copies or substantial portions of the Software.
|
c@119
|
16
|
c@119
|
17 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
c@119
|
18 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
c@119
|
19 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
c@119
|
20 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
c@119
|
21 CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
|
c@119
|
22 CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
c@119
|
23 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
c@119
|
24
|
c@119
|
25 Except as contained in this notice, the names of the Centre for
|
c@119
|
26 Digital Music; Queen Mary, University of London; and Chris Cannam
|
c@119
|
27 shall not be used in advertising or otherwise to promote the sale,
|
c@119
|
28 use or other dealings in this Software without prior written
|
c@119
|
29 authorization.
|
c@119
|
30 */
|
c@119
|
31
|
c@119
|
32 #include "Resampler.h"
|
c@119
|
33
|
c@122
|
34 #include "MathUtilities.h"
|
c@122
|
35 #include "KaiserWindow.h"
|
c@122
|
36 #include "SincWindow.h"
|
c@119
|
37
|
c@119
|
38 #include <iostream>
|
c@119
|
39 #include <vector>
|
c@119
|
40 #include <map>
|
c@119
|
41 #include <cassert>
|
c@119
|
42
|
c@119
|
43 using std::vector;
|
c@119
|
44 using std::map;
|
c@119
|
45 using std::cerr;
|
c@119
|
46 using std::endl;
|
c@119
|
47
|
c@119
|
48 //#define DEBUG_RESAMPLER 1
|
c@119
|
49 //#define DEBUG_RESAMPLER_VERBOSE 1
|
c@119
|
50
|
c@119
|
51 Resampler::Resampler(int sourceRate, int targetRate) :
|
c@119
|
52 m_sourceRate(sourceRate),
|
c@119
|
53 m_targetRate(targetRate)
|
c@119
|
54 {
|
c@119
|
55 initialise(100, 0.02);
|
c@119
|
56 }
|
c@119
|
57
|
c@119
|
58 Resampler::Resampler(int sourceRate, int targetRate,
|
c@119
|
59 double snr, double bandwidth) :
|
c@119
|
60 m_sourceRate(sourceRate),
|
c@119
|
61 m_targetRate(targetRate)
|
c@119
|
62 {
|
c@119
|
63 initialise(snr, bandwidth);
|
c@119
|
64 }
|
c@119
|
65
|
c@119
|
66 Resampler::~Resampler()
|
c@119
|
67 {
|
c@119
|
68 delete[] m_phaseData;
|
c@119
|
69 }
|
c@119
|
70
|
c@119
|
71 void
|
c@119
|
72 Resampler::initialise(double snr, double bandwidth)
|
c@119
|
73 {
|
c@119
|
74 int higher = std::max(m_sourceRate, m_targetRate);
|
c@119
|
75 int lower = std::min(m_sourceRate, m_targetRate);
|
c@119
|
76
|
c@119
|
77 m_gcd = MathUtilities::gcd(lower, higher);
|
c@119
|
78 m_peakToPole = higher / m_gcd;
|
c@119
|
79
|
c@119
|
80 if (m_targetRate < m_sourceRate) {
|
c@119
|
81 // antialiasing filter, should be slightly below nyquist
|
c@119
|
82 m_peakToPole = m_peakToPole / (1.0 - bandwidth/2.0);
|
c@119
|
83 }
|
c@119
|
84
|
c@119
|
85 KaiserWindow::Parameters params =
|
c@119
|
86 KaiserWindow::parametersForBandwidth(snr, bandwidth, higher / m_gcd);
|
c@119
|
87
|
c@119
|
88 params.length =
|
c@119
|
89 (params.length % 2 == 0 ? params.length + 1 : params.length);
|
c@119
|
90
|
c@119
|
91 params.length =
|
c@119
|
92 (params.length > 200001 ? 200001 : params.length);
|
c@119
|
93
|
c@119
|
94 m_filterLength = params.length;
|
c@119
|
95
|
c@119
|
96 vector<double> filter;
|
c@122
|
97
|
c@164
|
98 KaiserWindow kw(params);
|
c@164
|
99 SincWindow sw(m_filterLength, m_peakToPole * 2);
|
c@119
|
100
|
c@164
|
101 filter = vector<double>(m_filterLength, 0.0);
|
c@164
|
102 for (int i = 0; i < m_filterLength; ++i) filter[i] = 1.0;
|
c@164
|
103 sw.cut(filter.data());
|
c@164
|
104 kw.cut(filter.data());
|
c@122
|
105
|
c@119
|
106 int inputSpacing = m_targetRate / m_gcd;
|
c@119
|
107 int outputSpacing = m_sourceRate / m_gcd;
|
c@119
|
108
|
c@119
|
109 #ifdef DEBUG_RESAMPLER
|
c@119
|
110 cerr << "resample " << m_sourceRate << " -> " << m_targetRate
|
c@119
|
111 << ": inputSpacing " << inputSpacing << ", outputSpacing "
|
c@119
|
112 << outputSpacing << ": filter length " << m_filterLength
|
c@119
|
113 << endl;
|
c@119
|
114 #endif
|
c@119
|
115
|
c@119
|
116 // Now we have a filter of (odd) length flen in which the lower
|
c@119
|
117 // sample rate corresponds to every n'th point and the higher rate
|
c@119
|
118 // to every m'th where n and m are higher and lower rates divided
|
c@119
|
119 // by their gcd respectively. So if x coordinates are on the same
|
c@119
|
120 // scale as our filter resolution, then source sample i is at i *
|
c@119
|
121 // (targetRate / gcd) and target sample j is at j * (sourceRate /
|
c@119
|
122 // gcd).
|
c@119
|
123
|
c@119
|
124 // To reconstruct a single target sample, we want a buffer (real
|
c@119
|
125 // or virtual) of flen values formed of source samples spaced at
|
c@119
|
126 // intervals of (targetRate / gcd), in our example case 3. This
|
c@119
|
127 // is initially formed with the first sample at the filter peak.
|
c@119
|
128 //
|
c@119
|
129 // 0 0 0 0 a 0 0 b 0
|
c@119
|
130 //
|
c@119
|
131 // and of course we have our filter
|
c@119
|
132 //
|
c@119
|
133 // f1 f2 f3 f4 f5 f6 f7 f8 f9
|
c@119
|
134 //
|
c@119
|
135 // We take the sum of products of non-zero values from this buffer
|
c@119
|
136 // with corresponding values in the filter
|
c@119
|
137 //
|
c@119
|
138 // a * f5 + b * f8
|
c@119
|
139 //
|
c@119
|
140 // Then we drop (sourceRate / gcd) values, in our example case 4,
|
c@119
|
141 // from the start of the buffer and fill until it has flen values
|
c@119
|
142 // again
|
c@119
|
143 //
|
c@119
|
144 // a 0 0 b 0 0 c 0 0
|
c@119
|
145 //
|
c@119
|
146 // repeat to reconstruct the next target sample
|
c@119
|
147 //
|
c@119
|
148 // a * f1 + b * f4 + c * f7
|
c@119
|
149 //
|
c@119
|
150 // and so on.
|
c@119
|
151 //
|
c@119
|
152 // Above I said the buffer could be "real or virtual" -- ours is
|
c@119
|
153 // virtual. We don't actually store all the zero spacing values,
|
c@119
|
154 // except for padding at the start; normally we store only the
|
c@119
|
155 // values that actually came from the source stream, along with a
|
c@119
|
156 // phase value that tells us how many virtual zeroes there are at
|
c@119
|
157 // the start of the virtual buffer. So the two examples above are
|
c@119
|
158 //
|
c@119
|
159 // 0 a b [ with phase 1 ]
|
c@119
|
160 // a b c [ with phase 0 ]
|
c@119
|
161 //
|
c@119
|
162 // Having thus broken down the buffer so that only the elements we
|
c@119
|
163 // need to multiply are present, we can also unzip the filter into
|
c@119
|
164 // every-nth-element subsets at each phase, allowing us to do the
|
c@119
|
165 // filter multiplication as a simply vector multiply. That is, rather
|
c@119
|
166 // than store
|
c@119
|
167 //
|
c@119
|
168 // f1 f2 f3 f4 f5 f6 f7 f8 f9
|
c@119
|
169 //
|
c@119
|
170 // we store separately
|
c@119
|
171 //
|
c@119
|
172 // f1 f4 f7
|
c@119
|
173 // f2 f5 f8
|
c@119
|
174 // f3 f6 f9
|
c@119
|
175 //
|
c@119
|
176 // Each time we complete a multiply-and-sum, we need to work out
|
c@119
|
177 // how many (real) samples to drop from the start of our buffer,
|
c@119
|
178 // and how many to add at the end of it for the next multiply. We
|
c@119
|
179 // know we want to drop enough real samples to move along by one
|
c@119
|
180 // computed output sample, which is our outputSpacing number of
|
c@119
|
181 // virtual buffer samples. Depending on the relationship between
|
c@119
|
182 // input and output spacings, this may mean dropping several real
|
c@119
|
183 // samples, one real sample, or none at all (and simply moving to
|
c@119
|
184 // a different "phase").
|
c@119
|
185
|
c@119
|
186 m_phaseData = new Phase[inputSpacing];
|
c@119
|
187
|
c@119
|
188 for (int phase = 0; phase < inputSpacing; ++phase) {
|
c@119
|
189
|
c@119
|
190 Phase p;
|
c@119
|
191
|
c@119
|
192 p.nextPhase = phase - outputSpacing;
|
c@119
|
193 while (p.nextPhase < 0) p.nextPhase += inputSpacing;
|
c@119
|
194 p.nextPhase %= inputSpacing;
|
c@119
|
195
|
c@119
|
196 p.drop = int(ceil(std::max(0.0, double(outputSpacing - phase))
|
c@119
|
197 / inputSpacing));
|
c@119
|
198
|
c@119
|
199 int filtZipLength = int(ceil(double(m_filterLength - phase)
|
c@119
|
200 / inputSpacing));
|
c@119
|
201
|
c@119
|
202 for (int i = 0; i < filtZipLength; ++i) {
|
c@119
|
203 p.filter.push_back(filter[i * inputSpacing + phase]);
|
c@119
|
204 }
|
c@119
|
205
|
c@119
|
206 m_phaseData[phase] = p;
|
c@119
|
207 }
|
c@119
|
208
|
c@119
|
209 #ifdef DEBUG_RESAMPLER
|
c@119
|
210 int cp = 0;
|
c@119
|
211 int totDrop = 0;
|
c@119
|
212 for (int i = 0; i < inputSpacing; ++i) {
|
c@119
|
213 cerr << "phase = " << cp << ", drop = " << m_phaseData[cp].drop
|
c@119
|
214 << ", filter length = " << m_phaseData[cp].filter.size()
|
c@119
|
215 << ", next phase = " << m_phaseData[cp].nextPhase << endl;
|
c@119
|
216 totDrop += m_phaseData[cp].drop;
|
c@119
|
217 cp = m_phaseData[cp].nextPhase;
|
c@119
|
218 }
|
c@119
|
219 cerr << "total drop = " << totDrop << endl;
|
c@119
|
220 #endif
|
c@119
|
221
|
c@119
|
222 // The May implementation of this uses a pull model -- we ask the
|
c@119
|
223 // resampler for a certain number of output samples, and it asks
|
c@119
|
224 // its source stream for as many as it needs to calculate
|
c@119
|
225 // those. This means (among other things) that the source stream
|
c@119
|
226 // can be asked for enough samples up-front to fill the buffer
|
c@119
|
227 // before the first output sample is generated.
|
c@119
|
228 //
|
c@119
|
229 // In this implementation we're using a push model in which a
|
c@119
|
230 // certain number of source samples is provided and we're asked
|
c@119
|
231 // for as many output samples as that makes available. But we
|
c@119
|
232 // can't return any samples from the beginning until half the
|
c@119
|
233 // filter length has been provided as input. This means we must
|
c@119
|
234 // either return a very variable number of samples (none at all
|
c@119
|
235 // until the filter fills, then half the filter length at once) or
|
c@119
|
236 // else have a lengthy declared latency on the output. We do the
|
c@119
|
237 // latter. (What do other implementations do?)
|
c@119
|
238 //
|
c@119
|
239 // We want to make sure the first "real" sample will eventually be
|
c@119
|
240 // aligned with the centre sample in the filter (it's tidier, and
|
c@119
|
241 // easier to do diagnostic calculations that way). So we need to
|
c@119
|
242 // pick the initial phase and buffer fill accordingly.
|
c@119
|
243 //
|
c@119
|
244 // Example: if the inputSpacing is 2, outputSpacing is 3, and
|
c@119
|
245 // filter length is 7,
|
c@119
|
246 //
|
c@119
|
247 // x x x x a b c ... input samples
|
c@119
|
248 // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ...
|
c@119
|
249 // i j k l ... output samples
|
c@119
|
250 // [--------|--------] <- filter with centre mark
|
c@119
|
251 //
|
c@119
|
252 // Let h be the index of the centre mark, here 3 (generally
|
c@119
|
253 // int(filterLength/2) for odd-length filters).
|
c@119
|
254 //
|
c@119
|
255 // The smallest n such that h + n * outputSpacing > filterLength
|
c@119
|
256 // is 2 (that is, ceil((filterLength - h) / outputSpacing)), and
|
c@119
|
257 // (h + 2 * outputSpacing) % inputSpacing == 1, so the initial
|
c@119
|
258 // phase is 1.
|
c@119
|
259 //
|
c@119
|
260 // To achieve our n, we need to pre-fill the "virtual" buffer with
|
c@119
|
261 // 4 zero samples: the x's above. This is int((h + n *
|
c@119
|
262 // outputSpacing) / inputSpacing). It's the phase that makes this
|
c@119
|
263 // buffer get dealt with in such a way as to give us an effective
|
c@119
|
264 // index for sample a of 9 rather than 8 or 10 or whatever.
|
c@119
|
265 //
|
c@119
|
266 // This gives us output latency of 2 (== n), i.e. output samples i
|
c@119
|
267 // and j will appear before the one in which input sample a is at
|
c@119
|
268 // the centre of the filter.
|
c@119
|
269
|
c@119
|
270 int h = int(m_filterLength / 2);
|
c@119
|
271 int n = ceil(double(m_filterLength - h) / outputSpacing);
|
c@119
|
272
|
c@119
|
273 m_phase = (h + n * outputSpacing) % inputSpacing;
|
c@119
|
274
|
c@119
|
275 int fill = (h + n * outputSpacing) / inputSpacing;
|
c@119
|
276
|
c@119
|
277 m_latency = n;
|
c@119
|
278
|
c@119
|
279 m_buffer = vector<double>(fill, 0);
|
c@119
|
280 m_bufferOrigin = 0;
|
c@119
|
281
|
c@119
|
282 #ifdef DEBUG_RESAMPLER
|
c@119
|
283 cerr << "initial phase " << m_phase << " (as " << (m_filterLength/2) << " % " << inputSpacing << ")"
|
c@119
|
284 << ", latency " << m_latency << endl;
|
c@119
|
285 #endif
|
c@119
|
286 }
|
c@119
|
287
|
c@119
|
288 double
|
c@119
|
289 Resampler::reconstructOne()
|
c@119
|
290 {
|
c@119
|
291 Phase &pd = m_phaseData[m_phase];
|
c@119
|
292 double v = 0.0;
|
c@119
|
293 int n = pd.filter.size();
|
c@119
|
294
|
c@119
|
295 assert(n + m_bufferOrigin <= (int)m_buffer.size());
|
c@119
|
296
|
c@164
|
297 #if defined(__MSVC__)
|
c@164
|
298 #define R__ __restrict
|
c@164
|
299 #elif defined(__GNUC__)
|
c@164
|
300 #define R__ __restrict__
|
c@164
|
301 #else
|
c@164
|
302 #define R__
|
c@164
|
303 #endif
|
c@164
|
304
|
c@164
|
305 const double *const R__ buf(m_buffer.data() + m_bufferOrigin);
|
c@164
|
306 const double *const R__ filt(pd.filter.data());
|
c@119
|
307
|
c@119
|
308 for (int i = 0; i < n; ++i) {
|
c@119
|
309 // NB gcc can only vectorize this with -ffast-math
|
c@119
|
310 v += buf[i] * filt[i];
|
c@119
|
311 }
|
c@119
|
312
|
c@119
|
313 m_bufferOrigin += pd.drop;
|
c@119
|
314 m_phase = pd.nextPhase;
|
c@119
|
315 return v;
|
c@119
|
316 }
|
c@119
|
317
|
c@119
|
318 int
|
c@119
|
319 Resampler::process(const double *src, double *dst, int n)
|
c@119
|
320 {
|
c@119
|
321 for (int i = 0; i < n; ++i) {
|
c@119
|
322 m_buffer.push_back(src[i]);
|
c@119
|
323 }
|
c@119
|
324
|
c@119
|
325 int maxout = int(ceil(double(n) * m_targetRate / m_sourceRate));
|
c@119
|
326 int outidx = 0;
|
c@119
|
327
|
c@119
|
328 #ifdef DEBUG_RESAMPLER
|
c@119
|
329 cerr << "process: buf siz " << m_buffer.size() << " filt siz for phase " << m_phase << " " << m_phaseData[m_phase].filter.size() << endl;
|
c@119
|
330 #endif
|
c@119
|
331
|
c@119
|
332 double scaleFactor = (double(m_targetRate) / m_gcd) / m_peakToPole;
|
c@119
|
333
|
c@119
|
334 while (outidx < maxout &&
|
c@119
|
335 m_buffer.size() >= m_phaseData[m_phase].filter.size() + m_bufferOrigin) {
|
c@119
|
336 dst[outidx] = scaleFactor * reconstructOne();
|
c@119
|
337 outidx++;
|
c@119
|
338 }
|
c@119
|
339
|
c@119
|
340 m_buffer = vector<double>(m_buffer.begin() + m_bufferOrigin, m_buffer.end());
|
c@119
|
341 m_bufferOrigin = 0;
|
c@119
|
342
|
c@119
|
343 return outidx;
|
c@119
|
344 }
|
c@119
|
345
|
c@119
|
346 vector<double>
|
c@119
|
347 Resampler::process(const double *src, int n)
|
c@119
|
348 {
|
c@119
|
349 int maxout = int(ceil(double(n) * m_targetRate / m_sourceRate));
|
c@119
|
350 vector<double> out(maxout, 0.0);
|
c@119
|
351 int got = process(src, out.data(), n);
|
c@119
|
352 assert(got <= maxout);
|
c@119
|
353 if (got < maxout) out.resize(got);
|
c@119
|
354 return out;
|
c@119
|
355 }
|
c@119
|
356
|
c@119
|
357 vector<double>
|
c@119
|
358 Resampler::resample(int sourceRate, int targetRate, const double *data, int n)
|
c@119
|
359 {
|
c@119
|
360 Resampler r(sourceRate, targetRate);
|
c@119
|
361
|
c@119
|
362 int latency = r.getLatency();
|
c@119
|
363
|
c@119
|
364 // latency is the output latency. We need to provide enough
|
c@119
|
365 // padding input samples at the end of input to guarantee at
|
c@119
|
366 // *least* the latency's worth of output samples. that is,
|
c@119
|
367
|
c@119
|
368 int inputPad = int(ceil((double(latency) * sourceRate) / targetRate));
|
c@119
|
369
|
c@119
|
370 // that means we are providing this much input in total:
|
c@119
|
371
|
c@119
|
372 int n1 = n + inputPad;
|
c@119
|
373
|
c@119
|
374 // and obtaining this much output in total:
|
c@119
|
375
|
c@119
|
376 int m1 = int(ceil((double(n1) * targetRate) / sourceRate));
|
c@119
|
377
|
c@119
|
378 // in order to return this much output to the user:
|
c@119
|
379
|
c@119
|
380 int m = int(ceil((double(n) * targetRate) / sourceRate));
|
c@119
|
381
|
c@119
|
382 #ifdef DEBUG_RESAMPLER
|
c@119
|
383 cerr << "n = " << n << ", sourceRate = " << sourceRate << ", targetRate = " << targetRate << ", m = " << m << ", latency = " << latency << ", inputPad = " << inputPad << ", m1 = " << m1 << ", n1 = " << n1 << ", n1 - n = " << n1 - n << endl;
|
c@119
|
384 #endif
|
c@119
|
385
|
c@119
|
386 vector<double> pad(n1 - n, 0.0);
|
c@119
|
387 vector<double> out(m1 + 1, 0.0);
|
c@119
|
388
|
c@119
|
389 int gotData = r.process(data, out.data(), n);
|
c@119
|
390 int gotPad = r.process(pad.data(), out.data() + gotData, pad.size());
|
c@119
|
391 int got = gotData + gotPad;
|
c@119
|
392
|
c@119
|
393 #ifdef DEBUG_RESAMPLER
|
c@119
|
394 cerr << "resample: " << n << " in, " << pad.size() << " padding, " << got << " out (" << gotData << " data, " << gotPad << " padding, latency = " << latency << ")" << endl;
|
c@119
|
395 #endif
|
c@119
|
396 #ifdef DEBUG_RESAMPLER_VERBOSE
|
c@119
|
397 int printN = 50;
|
c@119
|
398 cerr << "first " << printN << " in:" << endl;
|
c@119
|
399 for (int i = 0; i < printN && i < n; ++i) {
|
c@119
|
400 if (i % 5 == 0) cerr << endl << i << "... ";
|
c@119
|
401 cerr << data[i] << " ";
|
c@119
|
402 }
|
c@119
|
403 cerr << endl;
|
c@119
|
404 #endif
|
c@119
|
405
|
c@119
|
406 int toReturn = got - latency;
|
c@119
|
407 if (toReturn > m) toReturn = m;
|
c@119
|
408
|
c@119
|
409 vector<double> sliced(out.begin() + latency,
|
c@119
|
410 out.begin() + latency + toReturn);
|
c@119
|
411
|
c@119
|
412 #ifdef DEBUG_RESAMPLER_VERBOSE
|
c@119
|
413 cerr << "first " << printN << " out (after latency compensation), length " << sliced.size() << ":";
|
c@119
|
414 for (int i = 0; i < printN && i < sliced.size(); ++i) {
|
c@119
|
415 if (i % 5 == 0) cerr << endl << i << "... ";
|
c@119
|
416 cerr << sliced[i] << " ";
|
c@119
|
417 }
|
c@119
|
418 cerr << endl;
|
c@119
|
419 #endif
|
c@119
|
420
|
c@119
|
421 return sliced;
|
c@119
|
422 }
|
c@119
|
423
|