annotate cortical_model.py @ 3:2d80632482b3

* Added exponential smoothing filtering into get_excitation_i() + dependencies * Broke up get_specific_loudness to allow user to return loudness parameters tq, A, G and alpha using get_specific_loudness_parameters(). * Commented all functions
author Carl Bussey <c.bussey@se10.qmul.ac.uk>
date Tue, 04 Feb 2014 14:46:06 +0000
parents dc43033a2c20
children 29cd3e735c4c
rev   line source
c@0 1 """
c@0 2 A module used for auditory analysis.
c@0 3
c@0 4 Models currently implemented:
c@0 5 * Frequency-modulation analysis model based on the human auditory system.
c@0 6
c@0 7 Model implementations in progress:
c@0 8 * Glasberg and Moore model
c@0 9
c@0 10 Packaged dependencies:
c@0 11 * utils.py and/or utils.pyc
c@0 12 * erb.dat
c@0 13 * outMidFir.dat
c@1 14 * tq.dat
c@0 15
c@0 16 External dependencies:
c@0 17 * scipy
c@0 18 * numpy
c@0 19 * copy
c@0 20 * matplotlib
c@0 21 """
c@0 22
c@0 23 import utils
c@0 24 import scipy.signal as sp
c@1 25 import scipy.fftpack as fft
c@0 26 import numpy as np
c@0 27 from copy import deepcopy
c@0 28 import matplotlib.pyplot as plt
c@0 29
c@1 30 def get_specific_loudness(exc_i, inc_loud_region = False):
c@0 31 """
c@3 32 A function to calculate the specific loudness of the excitation patterns at each ERB. Specific loudness is calculated for three regions of
c@3 33 signal intensity, low level, mid level and high level. The high level processing is optional, and by default, ignored. When ignored the high level
c@3 34 region is processed equivalent to that of the mid region.
c@3 35
c@3 36 Parameters:
c@3 37 * exc_i (type: array-like of floats) - an array of shape (39, lenSig) of the excitation intensity of the signal. The outer dimension determines the
c@3 38 ERB channel. (Required)
c@3 39 * inc_loud_region (type: boolean) - Specifies whether to process the high levels differently to the mid levels. (Optional; Default = False)
c@0 40
c@0 41 TO DO
c@0 42 """
c@3 43 exc_i = np.array(exc_i)
c@3 44
c@1 45 lenSig = np.shape(exc_i)[-1] #length signal
c@3 46 tq, G, A, alpha = get_specific_loudness_parameters(lenSig)
c@1 47 specific_loudness = exc_low = exc_mid = exc_high = np.zeros(np.shape(exc_i))
c@0 48
c@1 49 less_than_tq = get_less_than_tq(exc_i, tq) #boolean array of elements less than or equal to the threshold of quiet
c@1 50 greater_than_tq = ~less_than_tq #boolean array of elements greater than the threshold of quiet
c@1 51 greater_than_tl = get_greater_than_tl(exc_i) #boolean array of elements greater than the loud threshold
c@1 52 gttq_lttl = greater_than_tq[~greater_than_tl] #boolean array of elements greater than the threshold of quiet but less than the threshold of loud
c@0 53
c@1 54 exc_low = exc_i[less_than_tq]
c@1 55 specific_loudness[less_than_tq] = get_specific_loudness_low(exc_low, G[less_than_tq], tq[less_than_tq], A[less_than_tq], alpha[less_than_tq])
c@1 56
c@1 57 if(inc_loud_region):
c@1 58 exc_mid = exc_i[gttq_lttl]
c@1 59 exc_high = exc_i[greater_than_tl]
c@1 60 specific_loudness[gttq_lttl] = get_specific_loudness_mid(exc_mid, G[gttq_lttl], A[gttq_lttl], alpha[gttq_lttl])
c@1 61 specific_loudness[greater_than_tl] = get_specific_loudness_high(exc_high)
c@1 62 else:
c@1 63 exc_mid = exc_i[greater_than_tq]
c@1 64 specific_loudness[greater_than_tq] = get_specific_loudness_mid(exc_mid, G[greater_than_tq], A[greater_than_tq], alpha[greater_than_tq])
c@1 65
c@1 66 return specific_loudness
c@0 67
c@3 68 def get_specific_loudness_parameters(lenSig = 1):
c@3 69 """
c@3 70 Loads and returns the specific loudness values. If lenSig is specified, the parameters are shaped equal to the excitation signal to allow for
c@3 71 matrix elementwise operations between the parameters and signal. (Assumes excitation signal shape is [39, lenSig]).
c@3 72
c@3 73 Parameters:
c@3 74 * lenSig (type: numerical int) - the length of the excitation signal to be analysed. (Optional; Default = 1)
c@3 75
c@3 76 Returns:
c@3 77 * tq (type: numpy array of floats) - the threshold of quiet for each centre frequency of the ERBs
c@3 78 * G (type: numpy array of floats) - the frequency dependent gain values for each centre frequency of the ERBs
c@3 79 * A (type: numpy array of floats) - the frequency dependent A values for each centre frequency of the ERBs
c@3 80 * alpha (type: numpy array of floats) - the frequency dependent alpha values for each centre frequency of the ERBs
c@3 81 """
c@3 82
c@3 83 tq_dB, A, alpha = utils.load_sl_parameters() #load tq, A and alpha parameters
c@3 84 tq_dB = np.transpose(np.tile(tq_dB, (lenSig,1)))
c@3 85 tq = 10**(tq_dB / 10)
c@3 86 A = np.transpose(np.tile(A, (lenSig,1)))
c@3 87 alpha = np.transpose(np.tile(alpha, (lenSig,1)))
c@3 88 tq500_dB = 3.73 #threshold of quiet at 500Hz reference
c@3 89 G = 10**((tq500_dB - tq_dB)/10) #gain parameters
c@3 90
c@3 91 return tq, G, A, alpha
c@3 92
c@1 93 def get_specific_loudness_low(exc_low, G, tq, A, alpha):
c@3 94 """
c@3 95 Returns the specific loudness of the low level parts of the signal. Use get_specific_loudness_parameters() and specify lenSig
c@3 96 to obtain the correct values for G, tq, A and alpha. Use get_less_than_tq() to find the indexes of the samples with lower level
c@3 97 excitations.
c@3 98
c@3 99 e.g.,
c@3 100
c@3 101 # exc_i is the excitation intensity
c@3 102 lenSig = np.shape(exc_i)[-1] # find the length of the signal
c@3 103 tq, G, A, alpha = get_specific_loudness_parameters(lenSig) # get the shaped loudness parameters
c@3 104 less_than_tq = get_less_than_tq(exc_i, tq) # find which samples are lower level
c@3 105 specific_loudness[less_than_tq] = get_specific_loudness_low(exc_low[less_than_tq], G[less_than_tq], tq[less_than_tq], A[less_than_tq], alpha[less_than_tq])
c@3 106 # only process the low level part of the signal
c@3 107
c@3 108 Parameters:
c@3 109 * exc_low (type: array-like matrix of floats) - the lower level (less than or equal to tq) excitation pattern for each ERB
c@3 110 (Required)
c@3 111 * G (type: array-like matrix of floats) - the frequency dependent loudness gain parameters for each ERB, must be same shape
c@3 112 as exc_low. (Required)
c@3 113 * tq (type: array-like matrix of floats) - the frequency dependent threshold of quiet parameters for each ERB. Must be same
c@3 114 shape as exc_low. (Required)
c@3 115 * A (type: array-like matrix of floats) - the frequency dependent A parameters for each ERB. Must be same shape as exc_low.
c@3 116 * alpha (type: array-like matrix of floats) - the frequency dependent alpha parameters for each ERB. Must be same shape as
c@3 117 exc_low. (Required)
c@3 118
c@3 119 Returns:
c@3 120 * specific_loudness_low (type: array-like matrix of floats) - An array with dimensions equal to the exc_low containing the
c@3 121 specific loudness of the signal at levels below the threshold of quiet.
c@3 122 """
c@1 123
c@1 124 C = 0.047 #constant parameter
c@1 125 specific_loudness_low = C * ((2*exc_low)/(exc_low+tq))**1.5 * ((G * exc_low + A)**alpha - A**alpha)
c@1 126
c@1 127 return specific_loudness_low
c@1 128
c@1 129 def get_specific_loudness_mid(exc_mid, G, A, alpha):
c@3 130 """
c@3 131 Returns the specific loudness of the mid level parts of the signal.
c@3 132
c@3 133 e.g.,
c@3 134
c@3 135 # exc_i is the excitation intensity
c@3 136 lenSig = np.shape(exc_i)[-1] # find the length of the signal
c@3 137 tq, G, A, alpha = get_specific_loudness_parameters(lenSig) # get the shaped loudness parameters
c@3 138 less_than_tq = get_less_than_tq(exc_i, tq) # find which samples are lower level
c@3 139 greater_than_tq = ~less_than_tq # find which samples are greater than the threshold of quiet
c@3 140 greater_than_tl = get_greater_than_tl(exc_i) # find which samples are greater than the loud threshold
c@3 141 gttq_lttl = greater_than_tq[~greater_than_tl] # find which samples are mid level
c@3 142 specific_loudness[gttq_lttl] = get_specific_loudness_low(exc_low[gttq_lttl], G[gttq_lttl], tq[gttq_lttl], A[gttq_lttl], alpha[gttq_lttl])
c@3 143 # only process the mid level part of the signal
c@3 144
c@3 145 NOTE: The above is an example of use assuming the higher level processing IS NOT IGNORED. Use variable greater_than_tq if processing
c@3 146 higher levels equivalent to the mid.
c@3 147
c@3 148
c@3 149 Parameters:
c@3 150 * exc_mid (type: array-like matrix of floats) - the mid level (larger than tq (and, optionally less than high level threshold))
c@3 151 excitation pattern for each ERB (Required)
c@3 152 * G (type: array-like matrix of floats) - the frequency dependent loudness gain parameters for each ERB, must be same shape
c@3 153 as exc_low. (Required)
c@3 154 * A (type: array-like matrix of floats) - the frequency dependent A parameters for each ERB. Must be same shape as exc_low.
c@3 155 * alpha (type: array-like matrix of floats) - the frequency dependent alpha parameters for each ERB. Must be same shape as
c@3 156 exc_low. (Required)
c@3 157
c@3 158 Returns:
c@3 159 * specific_loudness_mid (type: array-like matrix of floats) - An array with dimensions equal to the exc_mid containing the
c@3 160 specific loudness of the signal at mid levels.
c@3 161 """
c@1 162
c@1 163 C = 0.047 #constant parameter
c@1 164 specific_loudness_mid = C * ((G * exc_mid + A)**alpha - A**alpha)
c@1 165
c@1 166 return specific_loudness_mid
c@1 167
c@1 168 def get_specific_loudness_high(exc_high):
c@1 169 """
c@3 170 Returns the specific loudness of the high level parts of the signal.
c@3 171
c@3 172 e.g.,
c@3 173
c@3 174 # exc_i is the excitation intensity
c@3 175 lenSig = np.shape(exc_i)[-1] # find the length of the signal
c@3 176 tq, G, A, alpha = get_specific_loudness_parameters(lenSig) # get the shaped loudness parameters
c@3 177 greater_than_tl = get_greater_than_tl(exc_i) # find which samples are greater than the loud threshold
c@3 178 specific_loudness[greater_than_tl] = get_specific_loudness_low(exc_low[greater_than_tl], G[greater_than_tl], tq[greater_than_tl], A[greater_than_tl], alpha[greater_than_tl])
c@3 179 # only process the mid level part of the signal
c@3 180
c@3 181 Parameters:
c@3 182 * exc_high (type: array-like matrix of floats) - the high level (larger than the threshold of high level) excitation pattern
c@3 183 for each ERB (Required)
c@3 184
c@3 185 Returns:
c@3 186 * specific_loudness_high (type: array-like matrix of floats) - An array with dimensions equal to the exc_high containing the
c@3 187 specific loudness of the signal at high levels.
c@1 188 """
c@1 189
c@1 190 C = 0.047 #constant parameter
c@1 191 specific_loudness_high = C * (exc_high / (1.04 * 10**6))**0.5
c@1 192
c@1 193 return specific_loudness_high
c@1 194
c@1 195 def get_greater_than_tl(exc_i):
c@1 196 """
c@1 197 A function to return if each element of the excitation intensity is greater than the threshold of loud.
c@1 198
c@1 199 Parameters:
c@1 200 * exc_i (type: array-like matrix of floats) - the input excitation intensity
c@1 201
c@1 202 Returns:
c@3 203 * le_tq (type: array-like matrix of booleans) - a boolean array with dimensions equal to the input
c@3 204 specifying if the excitation intensity is greater than the threshold of loud
c@1 205 """
c@1 206
c@1 207 lenSig = np.shape(exc_i)[-1]
c@1 208 g_tl = exc_i[:,:]>np.transpose(np.tile(10**10,(lenSig,39)))
c@1 209
c@1 210 return g_tl
c@1 211
c@1 212 def get_less_than_tq(exc_i, tq):
c@1 213 """
c@1 214 A function to return if each element of the excitation intensity is less than the threshold of quiet.
c@1 215
c@1 216 Parameters:
c@1 217 * exc_i (type: array-like matrix of floats) - the input excitation intensity
c@1 218 * tq (type: array-like matrix of floats) - the threshold of quiet for each ERB.
c@1 219
c@1 220 Returns:
c@1 221 * le_tq (type: array-like matrix of booleans) - a boolean array with dimensions equal to the input
c@1 222 specifying if the excitation intensity is less than the threshold of quiet
c@1 223 """
c@1 224
c@1 225 if (np.shape(exc_i)!=np.shape(tq)):
c@1 226 np.transpose(np.tile(exc_i,(np.shape(exc_i)[-1],1)))
c@1 227
c@1 228 le_tq = exc_i<=tq
c@1 229
c@1 230 return le_tq
c@1 231
c@1 232 def get_excitation_i(input, fs, SPL, rectify=False, verbose = False):
c@0 233 """
c@0 234 A function to calculate the excitation intensity of the input signal.
c@0 235
c@0 236 Parameters:
c@0 237 * input (type: array-like matrix of floats) - signal normalised to an amplitude range of -1 to 1. (Required)
c@0 238 * fs (type: numerical) - sample frequency of the signal, input. (Required)
c@0 239 * SPL (type: double) - the sound pressure level (SPL) at 0 dBFS, e.g., the SPL of a sine
c@0 240 wave with peaks at amplitude 1 and troughs at amplitude -1. (Required)
c@0 241 * rectify (type: boolean) - Specifies whether to include half wave rectification, modelling the direction
c@0 242 of that the cochlear nerves vibrate.
c@0 243 True to include, False to ignore. (Optional; Default = False)
c@0 244
c@0 245 Returns:
c@0 246 * gtfs (type: numpy array of floats) - array with size ((39,) + np.shape(input)) containing the excitation
c@0 247 pattern (in sound intensity) for each ERB of input signal. The excitation pattern for the nth ERB can
c@0 248 be accessed with gtfs[n].
c@0 249 """
c@0 250
c@0 251 input = np.array(input)
c@0 252 inputOMFir = outMidFir(input)
c@0 253 inputPa = v_Pascal(inputOMFir, SPL)
c@1 254 gtfs = gamma_tone_filter(inputPa, fs, verbose = verbose)
c@0 255 if (rectify):
c@0 256 gtfs = half_rectification(gtfs)
c@0 257 gtfs = pa_i(gtfs)
c@0 258 gtfs = at_normalise(gtfs)
c@3 259 b,a = exp_smoothing(fs)
c@3 260 gtfs = sp.lfilter(b,a,gtfs)
c@0 261
c@0 262 return gtfs
c@0 263
c@1 264 def plot_excitation_response(input = 0, fs = 44100, outMidFilt = True, xscale = 'log', yscale = 'log'):
c@0 265 """
c@0 266 A function that plots the transfer function of the outer middle ear and each gammatone filter.
c@0 267
c@0 268 Parameters:
c@0 269 * fs (type: numerical) - the sampling frequency of the signal. (Optional; Default = 44100)
c@0 270 * outMidFilt (type: boolean) - filter the signal by the outer and middle ear FIR filter. (Optional; Default = True)
c@0 271 * xscale (type: string) - the scale of the frequency axis. Values are 'log' or 'linear'. (Optional; Default = 'log')
c@0 272 * yscale (type: string) - the scale of the amplitude axis. Values are 'log' or 'linear'. (Optional; Default = 'log')
c@0 273
c@0 274 Returns:
c@0 275 * y (type: numpy array of floats) - array with size ((39,np.ceil(fs))) containing the impulse response of the
c@0 276 signal at each gammatone filter (and optionally, including the outer middle ear response). The response at the
c@0 277 nth gammatone filter can be accessed by y[n].
c@0 278 """
c@1 279
c@1 280 if ((np.shape(input)==())):
c@1 281 input = np.zeros(np.ceil(fs))
c@1 282 input[0] = 1
c@0 283 if(outMidFilt): input = outMidFir(input)
c@0 284 y = gamma_tone_filter(input, fs)
c@0 285
c@0 286 for i in range(np.shape(y)[0]):
c@0 287 utils.plot_fft(y[i],xscale, yscale, False)
c@0 288
c@0 289 plt.show()
c@0 290
c@1 291 return fft.fft(y)
c@0 292
c@0 293 def get_modulation_i(input, fs):
c@0 294 """
c@0 295 A function to calculate the modulation intensity of the input intensity signal. The function implements a
c@0 296 filter bank of bandpass filters with cut off frequencies ranging from 0.25 to 16 Hz.
c@0 297
c@0 298 Parameters:
c@0 299 * input (type: array-like matrix of floats) - the input intensity signal.
c@0 300 E.g., use get_excitation_i() to obtain excitation intensity and use as input.
c@0 301 * fs (type: numerical) - sampling frequency of input signal
c@0 302
c@0 303 Returns:
c@0 304 * y (type: numpy array of floats) - array with size ((10,) + np.shape(input)) containing the
c@0 305 modulation intensity of the signal at each modulation filter. The modulation intensity for the nth filter can
c@0 306 be accessed with y[n].
c@0 307 """
c@0 308
c@0 309 input = np.array(input)
c@0 310 b = fir_antialias(fs)
c@0 311 input_lp = sp.lfilter(b,(1),input_fr)
c@0 312 input_ds = downsample(input_lp, fs)
c@0 313 fc = np.array(utils.exp_sequence(-2,4,10))
c@0 314 bw = fc/2
c@0 315 y = decomposition(input_ds, fs, fc, bw)
c@0 316
c@0 317 return y
c@0 318
c@0 319 def outMidFir(input):
c@0 320 """
c@0 321 A function to filter the input signal with the response of the outer and middle ear.
c@0 322
c@0 323 Parameters:
c@0 324 * input (type: array-like matrix of floats) - signal normalised to an amplitude range of -1 to 1. (Required)
c@0 325
c@0 326 Returns:
c@0 327 * y (type: numpy array of floats) - array with dimensions equal to the input signal filtered by the response of
c@0 328 the outer and middle ear.
c@0 329 """
c@0 330
c@0 331 input = np.array(input)
c@0 332 b = utils.load_outMidFir_coeff()
c@0 333 y = sp.lfilter(b, (1), input)
c@0 334
c@0 335 return y
c@0 336
c@1 337 def gamma_tone_filter(input, fs, verbose = False):
c@0 338 """
c@0 339 A function to filter to decompose the input signal into 39 different gammatones filtered signals modelling the ERBs.
c@0 340
c@0 341 Parameters:
c@0 342 * input (type: array-like matrix of floats) - signal normalised to an amplitude range of -1 to 1. (Required)
c@0 343 * fs (type: numerical) - sample frequency of the signal, input. (Required)
c@0 344
c@0 345 Returns:
c@0 346 * y (type: numpy array of floats) - array with size ((39),np.shape(input)) containing the impulse response of the
c@0 347 signal at each gammatone filter. The response at the nth gammatone filter can be accessed by y[n].
c@0 348 """
c@0 349
c@0 350 input = np.array(input)
c@0 351 fc, bw = utils.load_erb_data()
c@1 352 y = decomposition(input,fs,fc,bw, verbose = verbose)
c@0 353
c@0 354 return y
c@0 355
c@0 356 def v_Pascal(input, SPL):
c@0 357 """
c@0 358 A function to convert a signal, normalised to an amplitude range of -1 to 1, to a signal represented in pressure (units: Pascal).
c@0 359
c@0 360 Parameters:
c@0 361 * input (type: array-like matrix of floats) - signal normalised to an amplitude range of -1 to 1. (Required)
c@0 362 * SPL (type: double) - the sound pressure level (SPL) at 0 dBFS, e.g., the SPL of a sine
c@0 363 wave with peaks at amplitude 1 and troughs at amplitude -1. (Required)
c@0 364
c@0 365 Returns:
c@0 366 * y (type: numpy array of floats) - array with dimensions equal to the input signal containing the input represented
c@0 367 as a pressure signal.
c@0 368 """
c@0 369
c@0 370 input = np.array(input)
c@1 371 y = np.sign(input)*(0.00002*10**(np.log10(np.abs(input))+SPL/20))
c@0 372
c@0 373 return y
c@0 374
c@0 375 def pa_i(input, C=406):
c@0 376 """
c@0 377 A function to convert a pressure signal (unit: Pascal) to an intensity signal.
c@0 378
c@0 379 Parameters:
c@0 380 * input (type: array-like matrix of floats) - pressure signal (unit: Pascal) (Required)
c@0 381 * C (type: double) - the acoustic impedance of the air (Optional; Default = 406)
c@0 382
c@0 383 Returns:
c@0 384 * y (type: numpy array of floats) - array with dimensions equal to the input signal containing the input represented
c@0 385 as a pressure signal.
c@0 386 """
c@0 387
c@0 388 input = np.array(input)
c@0 389 y = (input**2) / C
c@0 390
c@0 391 return y
c@0 392
c@0 393 def at_normalise(input):
c@0 394 """
c@0 395 A function to normalise an intensity signal with the audibility threshold.
c@0 396
c@0 397 Parameters:
c@0 398 * input (type: array-like matrix of floats) - intensity signal (unit: Pascal) (Required)
c@0 399
c@0 400 Returns:
c@0 401 * y (type: numpy array of floats) - array with dimensions equal to the input signal containing the input normalised
c@0 402 with the audibility threshold.
c@0 403 """
c@0 404
c@0 405 input = np.array(input)
c@0 406 y = input / 1*(10**12)
c@0 407
c@1 408 return y
c@0 409
c@0 410 def downsample(input, factor=100):
c@0 411 """
c@0 412 A function to downsample a signal, input, with sampling frequency, fs, by a downsample factor of factor.
c@0 413
c@0 414 NOTE: It is advised to use the fir_antialias() function before downsampling to remove any high frequencies
c@0 415 which would otherwise represented as low frequencies due to aliasing.
c@0 416
c@0 417 Parameters:
c@0 418 * input (type: array-like matrix of floats) - input signal. (Required)
c@0 419 * factor - downsample factor (Optional; Default = 100)
c@0 420
c@0 421 Returns:
c@0 422 * output (type: numpy array of floats) - array with outer dimensions equivalent to the to the input, and
c@0 423 inner dimension equal to np.floor(lenIn / factor) where lenIn is the length of the inner dimension.
c@0 424 """
c@0 425
c@0 426 input = np.array(input)
c@0 427 shapeIn = np.shape(input)
c@0 428 nDim = np.shape(shapeIn)
c@0 429 lenIn = shapeIn[nDim[0]-1]
c@0 430 lenOut = np.floor(lenIn / factor)
c@0 431 n = np.linspace(0,lenIn,lenOut, endpoint=False).astype(np.int)
c@0 432 output = input[...,n]
c@0 433
c@0 434 return output
c@0 435
c@0 436 def half_rectification(input):
c@0 437 """
c@0 438 A function which performs a half-wave rectification on the input signal.
c@0 439
c@0 440 Parameters:
c@0 441 * input (type: array-like matrix of floats) - input signal. (Required)
c@0 442
c@0 443 Returns:
c@0 444 * y (type: numpy array of floats) - an array with dimensions of input containing the half-wave rectification of
c@0 445 input.
c@0 446 """
c@0 447
c@0 448
c@0 449 y = np.array(input)
c@0 450 y[y<0] = 0
c@0 451
c@0 452 return y
c@0 453
c@0 454 def decomposition(input, fs, fc, bw, order=1024, verbose = False):
c@0 455 """
c@0 456 A function to run the input filter through a bandpass filter bank of length equal to the length of fc. Each
c@0 457 bandpass filter is designed by defining the centre frequencies, fc, and bandwidths, bw.
c@0 458
c@0 459 Parameters:
c@0 460 * input (type: array-like matrix of floats) - input signal. (Required)
c@0 461 * fs (type: numerical) - the sampling frequency of the input signal. (Required)
c@0 462 * fc (type: array-like vector of floats) - the centre off frequencies (unnormalised) of each bandpass filter.
c@0 463 The length of this vector determines the number of filters in the bank.
c@0 464 * bw (type: array-like vector of floats) - the bandwidths (unnormalised) of each bandpass filter. Must be equal
c@0 465 to or more than the length of fc. If the length is more, all elements exceeding the length of fc - 1 will be
c@0 466 ignored.
c@0 467 * order (type: numerical int) - the order of the filter (number of taps minus 1) (Optional; Default = 1024)
c@0 468 * verbose (type: boolean) - determines whether to display the current subroutine/progress of the procedure.
c@0 469 (Optional; Default = False)
c@0 470
c@0 471 Returns:
c@0 472 * y (type: numpy array of floats) - an array with inner dimensions equal to that of the input and outer dimension equal to
c@0 473 the length of fc (i.e. the number of bandpass filters in the bank) containing the outputs to each filter. The output
c@0 474 signal of the nth filter can be accessed using y[n].
c@0 475 """
c@0 476
c@0 477 input = np.array(input)
c@0 478 nFreqs = len(fc)
c@0 479 shape = (nFreqs,) + np.shape(input)
c@0 480 shape = shape[0:]
c@0 481 y = np.zeros(shape)
c@0 482
c@0 483 if(verbose): print "Running frequency decomposition."
c@0 484 for i in range(nFreqs):
c@0 485 if(verbose): print str(100.0*i/nFreqs) + "% complete."
c@0 486 low = fc[i]-bw[i]/2;
c@0 487 high = fc[i]+bw[i]/2;
c@0 488 if(verbose): print "Low: " + str(low) + "; High: " + str(high)
c@0 489 b = fir_bandpass(low, high, fs, order, verbose)
c@0 490 x = deepcopy(input)
c@0 491 y[i] = sp.lfilter(b,(1),x)
c@0 492
c@0 493 return y
c@0 494
c@3 495 def exp_smoothing(fs, tc = 0.01):
c@3 496 """
c@3 497 Designs an exponential filter, y[n] = alpha*x[n] - -(1-alpha)*y[n-1], where alpha = T/(tc+T), where T
c@3 498 is the inverse of the sampling frequency and time constant, tc, is specified.
c@3 499
c@3 500 Parameters:
c@3 501 * fs (type: numerical) - sampling frequency of the signal to be filtered (Required)
c@3 502 * tc (type: numerical) - the time constant of the filter. (Optional; Default = 0.01)
c@3 503
c@3 504 Returns:
c@3 505 * b (type: numerical) - the coefficient of x[n]. Equal to alpha.
c@3 506 * a (type: numpy array of floats) - an array of size 2 of the coefficients of y[n] (a[0] = 1) and y[n-1]
c@3 507 """
c@3 508
c@3 509 T = 1.0/fs
c@3 510 alpha = T/(tc + T)
c@3 511 b = [alpha]
c@3 512 a = [1, -(1-alpha)]
c@3 513
c@3 514 return b, a
c@3 515
c@3 516 def antialias_fir(fs, fc=100, order=64):
c@3 517 """
c@3 518 A function which returns the b coefficients for a lowpass fir filter with specified requirements.
c@3 519 Made specifically to remove aliasing when downsampling, but can be used for any application that
c@3 520 requires a lowpass filter.
c@3 521
c@3 522 Parameters:
c@3 523 * fs (type: numerical) - sampling frequency of the signal to be filtered (Required)
c@3 524 * fc (type: numerical) - unnormalised cut off frequency of the filter (Optional; Default = 100)
c@3 525 * order (type: numerical int) - the order of the filter (number of taps minus 1) (Optional; Default = 64)
c@3 526
c@3 527 Returns:
c@3 528 * b (type: numpy array of floats) - an array of size order + 1 (i.e. a coefficient for each tap)
c@3 529 """
c@3 530
c@3 531 nyquist = 0.5*fs
c@3 532 fcNorm = fc/nyquist
c@3 533 b = sp.firwin(order+1, fcNorm)
c@3 534
c@3 535 return b
c@3 536
c@0 537 def fir_bandpass(low, high, fs, order = 1024, verbose = False):
c@0 538 """
c@0 539 A function which returns the b coefficients for a bandpass fir filter with specified requirements.
c@0 540
c@0 541 Parameters:
c@0 542 * low - the lower cutoff frequency of the filter. (Required)
c@0 543 * high - the upper cutoff frequency of the filter. (Required)
c@0 544 * fs (type: numerical) - sampling frequency of the signal to be filtered. (Required)
c@0 545 * order (type: numerical int) - the order of the filter (number of taps minus 1) (Optional; Default = 1024)
c@0 546 * verbose (type: boolean) - determines whether to display the current progress (or info on the current subroutine)
c@0 547 of the procedure. (Optional; Default = False)
c@0 548
c@0 549 Returns:
c@0 550 * b (type: numpy array of floats) - an array of size order + 1 (i.e. a coefficient for each tap).
c@0 551 """
c@0 552
c@0 553 nyquist = 0.5*fs
c@0 554 lowNorm = low/nyquist
c@0 555 highNorm = high/nyquist
c@0 556 if(verbose): print "Low: " + str(lowNorm) + "; High: " + str(highNorm)
c@0 557 b = sp.firwin(order+1, [lowNorm, highNorm], pass_zero=False)
c@0 558
c@0 559 return b