Mercurial > hg > chourdakisreiss2016
view experiment-reverb/code/supervised_training_pca_bak3.py @ 2:c87a9505f294 tip
Added LICENSE for code, removed .wav files
author | Emmanouil Theofanis Chourdakis <e.t.chourdakis@qmul.ac.uk> |
---|---|
date | Sat, 30 Sep 2017 13:25:50 +0100 |
parents | 246d5546657c |
children |
line wrap: on
line source
#!/usr/bin/python2 # -*- coding: utf-8 -*- """ Created on Thu Apr 23 11:53:17 2015 @author: mmxgn """ # This file does the cluster estimation and the removal of outliers from sys import argv, exit from essentia.standard import YamlInput, YamlOutput from essentia import Pool from pca import * from numpy import * from sklearn import cluster from sklearn.metrics import pairwise_distances from sklearn.cluster import KMeans, MiniBatchKMeans import matplotlib.pyplot as plt #from sklearn.mixture import GMM from sklearn.naive_bayes import GaussianNB, MultinomialNB from scipy.signal import decimate from sklearn import cross_validation #from hmmlearn import hmm from hmmlearn.hmm import GMM from hmmlearn import hmm #from adpcm import adm, adm_reconstruct mse = lambda A,B: ((array(A)-array(B)) ** 2).mean() def smooth_matrix_1D(X): window = scipy.signal.gaussian(51,4) window = window/sum(window) intermx = zeros((X.shape[0],X.shape[1]+100)) intermx[:, 50:-50] = X for m in range(0, X.shape[0]): # print intermx.shape intermx[m,:] = convolve(ravel(intermx[m,:]), window,'same') return intermx[:,50:-50] def adm_reconstruct(codeword, h, dmin=.01, dmax=.28): x = zeros((1, codeword.shape[1])) delta1 = dmin delta2 = dmin Sum = h x[0] = h for i in range(0, codeword.shape[1]): if codeword[0,i] == 0: delta1 = dmin delta2 = dmin elif codeword[0,i] == 1: delta2 = dmin Sum += delta1 delta1 *= 2 if delta1 > dmax: delta1 = dmax elif codeword[0,i] == -1: delta1 = dmin Sum -= delta2 delta2 *= 2 if delta2 > dmax: delta2 = dmax x[0,i] = Sum return x def adm(x, dmin=.01, dmax=.28, tol=0.0001): # Adaptive delta modulation adapted by code: # (adeltamod.m) # # Adaptive Delta Modulator # by Gandhar Desai (gdesai) # BITS Pilani Goa Campus # Date: 28 Sept, 2013 xsig = x Lx = len(x) ADMout = zeros((1, Lx)) codevec = zeros((1, Lx)) Sum = x[0] delta1 = dmin delta2 = dmin mult1 = 2 mult2 = 2 for i in range(0, Lx): #print abs(xsig[i] - Sum) if (abs(xsig[i] - Sum) < tol): bit = 0 delta2 = dmin delta1 = dmin elif (xsig[i] >= Sum): bit = 1 delta2 = dmin Sum += delta1 delta1 *= mult1 if delta1 > dmax: delta1 = dmax else: bit = -1 delta1 = dmin Sum -= delta2 delta2 *= mult2 if delta2 > dmax: delta2 = dmax ADMout[0, i] = Sum codevec[0, i]= bit return ADMout,codevec, x[0] if __name__=="__main__": if len(argv) != 2: print "[EE] Wrong number of arguments" print "[II] Correct syntax is:" print "[II] \t%s <training_file>" print "[II] where <training_file> is a .yaml file containing the" print "[II] features of the dataset (try output2_stage/fulltraining-last.yaml)" exit(-1) n_clusters = 3 UpsamplingFactor = 1 dmin = 0.001 dmax = 0.28 tol = 0.001 infile = argv[1] features_pool = YamlInput(filename = infile)() feature_captions = features_pool.descriptorNames() parameter_captions = [] for c in features_pool.descriptorNames(): if c.split('.')[0] == 'parameter': parameter_captions.append(c) if c.split('.')[0] == 'metadata' or c.split('.')[0] == 'parameter': feature_captions.remove(c) close('all') print "[II] Loaded training data from %s (%s) " % (infile, features_pool['metadata.date'][0]) print "[II] %d Features Available: " % len(feature_captions) print str(feature_captions).replace("', ","\n").replace('[','').replace("'","[II]\t ")[:-7] nfeatures_in = len(feature_captions) nparameters_in = len(parameter_captions) features_vector = zeros((nfeatures_in, len(features_pool[feature_captions[0]]))) parameters_vector = zeros((nparameters_in, len(features_pool[parameter_captions[0]]))) for i in range(0, nfeatures_in): features_vector[i, :] = features_pool[feature_captions[i]].T for i in range(0, nparameters_in): parameters_vector[i, :] = features_pool[parameter_captions[0]].T print "[II] %d parameters used:" % len(parameter_captions) print str(parameter_captions).replace("', ","\n").replace('[','').replace("'","[II]\t ")[:-7].replace('parameter.','') print "[II] Marking silent parts" silent_parts = zeros((1, len(features_pool[feature_captions[i]].T))) rms = features_vector[feature_captions.index('rms'), :] # Implementing Hysteresis Gate -- High threshold is halfway between # the mean and the max and Low is halfway between the mean dn the min rms_threshold_mean = mean(rms) rms_threshold_max = max(rms) rms_threshold_min = min(rms) rms_threshold_high = 0.1 * rms_threshold_mean rms_threshold_low = 0.01 * rms_threshold_mean for n in range(1, len(rms)): prev = rms[n-1] curr = rms[n] if prev >= rms_threshold_high: if curr < rms_threshold_low: silent_parts[0,n] = 1 else: silent_parts[0,n] = 0 elif prev <= rms_threshold_low: if curr > rms_threshold_high: silent_parts[0,n] = 0 else: silent_parts[0,n] = 1 else: silent_parts[0,n] = silent_parts[0,n-1] if silent_parts[0,1] == 1: silent_parts[0, 0] = 1 # plot(rms) # plot(silent_parts.T) # plot(ones((len(rms), 1))*rms_threshold_high) # plot(ones((len(rms), 1))*rms_threshold_low) active_index = invert(silent_parts.flatten().astype(bool)) # Keep only active parts # Uncomment this features_vector = features_vector[:, active_index] # parameters_vector = parameters_vector[:, active_index] moments_vector = zeros((features_vector.shape[0], 2)) print "[II] Storing moments vector" for i in range(0, features_vector.shape[0]): mean_ = mean(features_vector[i,:]) std_ = std(features_vector[i,:], ddof=1) moments_vector[i,0] = mean_ moments_vector[i,1] = std_ features_vector[i,:] = (features_vector[i,:] - mean_)/std_ features_vector_original = features_vector print "[II] Extracting PCA configuration " kernel, q, featurelist = extract_pca_configuration_from_data(features_vector) print "[II] Optimal number of PCs to keep: %d" % q feature_captions_array = array(feature_captions) # features_to_keep = features_vector features_to_keep = list(feature_captions_array[featurelist]) print "[II] Decided to keep %d features:" % len(features_to_keep) print str(features_to_keep).replace("', ","\n").replace('[','').replace("'","[II]\t ")[:-7] # Keep the desired features #Uncomment this features_kept_data = features_vector[featurelist,:] # features_kept_data = features_vector # features_kept_data = features_vector # Generate the parameter clusters using k-means # Uncomment this features_vector = (kernel.T*features_kept_data)[0:q,:] #features_vector = log(features_vector+0.001) # features_vector = features_vector_original # parameters_k_means = KMeans(n_clusters = parameters_k, init='k-means++', max_iter=300, tol=0.0000001, verbose = 1) parameters_k_means = KMeans(init='k-means++', n_init=10, max_iter=300, tol=0.0000001, verbose = 0) # # parameters_k_means = MiniBatchKMeans(init='k-means++', max_iter=300, tol=0.00001, verbose = 1) # # # Quantize the differences of the parameters instead of the parameters themselves # parameters_vector_diff = concatenate((zeros((shape(parameters_vector)[0],1)),diff(parameters_vector, axis=1)),axis=1) # features_vector_diff = concatenate((zeros((shape(features_vector)[0],1)),diff(features_vector,axis=1)),axis=1) # # # Delete this afterwards # # features_vector = features_vector_diff # parameters_k_means.fit(parameters_vector_diff.T) print "[II] Trying ADM-coded parameters" print "[II] Upsampling features and parameters by a factor of %d" % UpsamplingFactor # Upsampled features and parameters features_vector_upsampled = repeat(features_vector,UpsamplingFactor, axis=1) # feature_labels_upsampled = repeat(features_clustering_labels,UpsamplingFactor, axis=0) parameters_vector_upsampled = repeat(parameters_vector,UpsamplingFactor, axis=1) # parameters_vector_upsampled = smooth_matrix_1D(parameters_vector_upsampled) parameters_vector_upsampled_adm = matrix(zeros(shape(parameters_vector_upsampled))) parameters_vector_upsampled_code = matrix(zeros(shape(parameters_vector_upsampled))) parameters_vector_upsampled_firstval = matrix(zeros((parameters_vector_upsampled.shape[0],1))) # Reconstructed parameters parameters_vector_upsampled_reconstructed = matrix(zeros(shape(parameters_vector_upsampled))) def adm_matrix(X, dmin=0.001,dmax=0.28,tol=0.001): out = matrix(zeros(shape(X))) code = matrix(zeros(shape(X))) firstval = matrix(zeros((X.shape[0], 1))) for i in range(0, X.shape[0]): out[i,:], code[i,:], firstval[i,0] = adm(X[i,:],dmin=dmin,dmax=dmax,tol=tol) return out,code,firstval # parameters_vector_upsampled_reconstructed[i,:] = adm_reconstruct(parameters_vector_upsampled_code[i,:],parameters_vector_upsampled_firstval[i,0], dmin=dmin,dmax=dmax) def adm_matrix_reconstruct(code, firstval, dmin=0.001, dmax=0.28): X = matrix(zeros(shape(code))) for i in range(0, code.shape[0]): X[i,:] = adm_reconstruct(code[i,:], firstval[i,0], dmin=dmin, dmax=dmax) return X parameters_vector_upsampled_adm, parameters_vector_upsampled_code, parameters_vector_upsampled_firstval = adm_matrix(parameters_vector_upsampled, dmin, dmax, tol) def diff_and_pad(X): return concatenate(( zeros(( shape(X)[0], 1 )), diff(X, axis=1)), axis=1) # features_vector_upsampled = features_vector_upsampled features_vector_upsampled = diff_and_pad(features_vector_upsampled) # features_vector_diff = concatenate((zeros((shape(features_vector)[0],1)),diff(features_vector,axis=1)),axis=1) # Segmentation stuff # for i in range(0, parameters_vector_upsampled.shape[0]): # out, code, h = adm(parameters_vector_upsampled[i,:],dmin=dmin,dmax=dmax,tol=tol) # parameters_vector_upsampled_adm[i,:] = out # parameters_vector_upsampled_code[i,:] = code # parameters_vector_upsampled_firstval[i, 0] = h # parameters_k_means.fit(parameters_vector.T) ## # parameters_k_means_centers = parameters_k_means.cluster_centers_ # parameters_k_means_labels = parameters_k_means.labels_ ## # parameters_vector_estimated = zeros(shape(parameters_vector)) ## # for n in range(0, len(parameters_vector_estimated[0])): # parameters_vector_estimated[:,n] = parameters_k_means_centers[parameters_k_means_labels[n]] ## ### plot(parameters_vector[0]) ## # plot(parameters_vector_estimated[0]) ## ## # PROvLIMA EDW # print "[II] Parameters MSE for %d clusters: %.3f" % (len(parameters_k_means.cluster_centers_), mse(parameters_vector, parameters_vector_estimated)) # ## print "[II] Clustering features." # features_clustering = GMM(n_components = n_clusters, covariance_type='full') # features_clustering.fit( features_vector_upsampled.T, y=parameters_vector_upsampled_code) # features_clustering_means = features_clustering.means_ features_clustering_labels = features_clustering.predict(features_vector_upsampled.T) features_clustering_sigmas = features_clustering.covars_ # features_vector_upsampled_estimated = zeros(shape(features_vector_upsampled)) # # for n in range(0, len(features_vector_upsampled_estimated[0])): features_vector_upsampled_estimated[:,n] = features_clustering_means[features_clustering_labels[n]] # # # for n in range(0,features_vector.shape[0]): # # hist(features_vector[1]-features_vector_estimated[1], 256) # std(features_vector[1]-features_vector_estimated[1], ddof=1) # mean(features_vector[1]-features_vector_estimated[1]) # print "[II] Features MSE for %d clusters: %.3f" % (n_clusters, mse(features_vector_upsampled, features_vector_upsampled_estimated)) def cross_validate_clustering(data, estimator): print "[II] Crossvalidating... " estimator_fulldata = estimator estimator_fulldata.fit(data) # labels = estimator_fulldata.predict(data) means = estimator_fulldata.means_ # print means percents = arange(0.1,0.6,0.1) MSEs = [] reconstructed = zeros(shape(data)) labels = estimator.predict(data) for n in range(0, len(reconstructed)): reconstructed[n,:] = means[labels[n]] MSEs.append(mse(data,reconstructed)) for p in percents: train,test = cross_validation.train_test_split(data,test_size=p,random_state=0) train = matrix(train) test = matrix(test) # print shape(train) # print shape(test) estimator.fit(train) means = estimator.means_ labels = estimator.predict(test) reconstructed = zeros(shape(test)) for n in range(0, len(reconstructed)): reconstructed[n,:] = means[labels[n]] m = mse(test,reconstructed) print "[II] MSE for clustering crossvalidated data %.2f-%.2f: %.5f" % ((1-p), p, m) MSEs.append(m) print "[II] Crossvalidation complete" return MSEs # print "[II] Trying Cross Validation" # cross_validate_clustering(features_vector_upsampled.T, features_clustering) # Construct parameters alphabet, each symbol is going to be a different column vector # in parameter code matrix def vector_to_states(X): """ Input: a vector MxN with N samples and M variables Output: a codeword dictionary `parameters_alphabet', state_seq, inverse `parameters_alphabet_inv' """ parameters_alphabet = {} n = 0 for i in range(0, X.shape[1]): vec = tuple(ravel(X[:,i])) if vec not in parameters_alphabet: parameters_alphabet[vec] = n n += 1 parameters_alphabet_inv = dict([(parameters_alphabet[m],m) for m in parameters_alphabet]) state_seq = array([parameters_alphabet[tuple(ravel(X[:,m]))] for m in range(0, parameters_vector_upsampled_code.shape[1])] ) return state_seq, parameters_alphabet, parameters_alphabet_inv def states_to_vector(predicted, parameters_alphabet_inv): estimated = matrix(zeros((len(parameters_alphabet_inv[0]), len(predicted)))) for i in range(0, len(state_seq)): estimated[:, i] = matrix(parameters_alphabet_inv[predicted[i]]).T return estimated state_seq, parameters_alphabet, parameters_alphabet_inv = vector_to_states(parameters_vector_upsampled_code) parameters_change_variable = matrix(diff_and_pad(parameters_vector_upsampled)!=0).astype(int) changes_state_seq, changes_parameters_alphabet, changes_parameters_alphabet_inv = vector_to_states(parameters_change_variable) # This is an hmm that just codes the changes" # We have only two states, change and stay the same. print "[II] (changes hmm-chain) Creating emission probability mixtures for every state " gmm_list_changes = [] for n in range(0, 2): vectors = features_vector_upsampled[:,changes_state_seq == n] gmm = GMM(n_components=n_clusters, covariance_type = 'diag') gmm.fit(vectors.T) gmm_list_changes.append(gmm) hmm_changes = hmm.GMMHMM(n_components=2, gmms=array(gmm_list_changes),n_mix=n_clusters) hmm_changes.fit([array(features_vector_upsampled).T]) subplot(211) plot(parameters_change_variable.T) subplot(212) changes_predicted_states = hmm_changes.predict(array(features_vector_upsampled.T)) predicted_changes_estimated = states_to_vector(changes_predicted_states, changes_parameters_alphabet_inv) plot(predicted_changes_estimated.T) # End of changes HMM here print "[II] Creating emission probability mixtures for every state" gmm_list = [] for n in range(0, 3): vectors = features_vector_upsampled[:,state_seq == n] gmm = GMM(n_components=n_clusters,covariance_type = 'diag') gmm.fit(vectors.T) gmm_list.append(gmm) hmm1 = hmm.GMMHMM(n_components=3, gmms=array(gmm_list),n_mix=n_clusters) hmm1.fit([array(features_vector_upsampled).T]) figure() subplot(221) plot(parameters_vector_upsampled_code.T) predicted = hmm1.predict(array(features_vector_upsampled.T)) code_estimated = matrix(zeros((len(parameters_vector_upsampled), len(state_seq)))) # for i in range(0, len(state_seq)): # code_estimated[:, i] = matrix(parameters_alphabet_inv[predicted[i]]).T code_estimated = states_to_vector(predicted,parameters_alphabet_inv) subplot(222) plot(code_estimated.T) reconstructed_original = adm_matrix_reconstruct(parameters_vector_upsampled_code, parameters_vector_upsampled_firstval) subplot(223) plot(reconstructed_original.T) subplot(224) reconstructed_estimated = adm_matrix_reconstruct(code_estimated, parameters_vector_upsampled_firstval) plot(reconstructed_estimated.T) # scatter(features_vector_upsampled[0,:],features_vector_upsampled_estimated[0,:]) # scatter(features_vector_upsampled[1,:],features_vector_upsampled_estimated[1,:]) # # xlabel('Original Features on Principal Components') # ylabel('Estimated Features on Principal Components') # title('Original vs Estimated Features') # savefig('original_vs_estimated.png') # # # print "[II] Testing Gaussian Naive Bayes Classifier" ## # gnb = GaussianNB() # gnb.fit(features_vector_upsampled.T, parameters_vector_upsampled_code.T) # parameters_vector_upsampled_code_estimated = gnb.predict(features_vector_upsampled.T) # # ## # print "[II] Raw Parameters - Gaussian Naive Bayes classifier testing ratio: %.4f" % (float(sum((parameters_vector_upsampled_code_estimated == parameters_vector_upsampled_code).astype(float)))/float(len(parameters_k_means_labels))) ## # plot(adm_matrix_reconstruct(parameters_vector_upsampled_code_estimated,parameters_vector_upsampled_firstval,dmin,dmax).T) # # print "[II] Trying ADM-coded parameters" # UpsamplingFactor = 100 # print "[II] Upsampling features and parameters by a factor of %d" % UpsamplingFactor # # # # Upsampled features and parameters # features_vector_upsampled = repeat(features_vector,UpsamplingFactor, axis=1) # feature_labels_upsampled = repeat(features_clustering_labels,UpsamplingFactor, axis=0) # parameters_vector_upsampled = repeat(parameters_vector,UpsamplingFactor, axis=1) # # parameters_vector_upsampled_adm = matrix(zeros(shape(parameters_vector_upsampled))) # parameters_vector_upsampled_code = matrix(zeros(shape(parameters_vector_upsampled))) # parameters_vector_upsampled_firstval = matrix(zeros((parameters_vector_upsampled.shape[0],1))) # # # Reconstructed parameters # # parameters_vector_upsampled_reconstructed = matrix(zeros(shape(parameters_vector_upsampled))) # # dmin = 0.001 # dmax = 0.28 # tol = 0.001 # for i in range(0, parameters_vector_upsampled.shape[0]): # out, code, h = adm(parameters_vector_upsampled[i,:],dmin=dmin,dmax=dmax,tol=tol) # parameters_vector_upsampled_adm[i,:] = out # parameters_vector_upsampled_code[i,:] = code # parameters_vector_upsampled_firstval[i, 0] = h # # # # Reconstruct-ADM # parameters_vector_upsampled_reconstructed[i,:] = adm_reconstruct(parameters_vector_upsampled_code[i,:],parameters_vector_upsampled_firstval[i,0], dmin=dmin,dmax=dmax) # # # # plot(parameters_vector_upsampled_adm.T, 'r--') # # # # plot(parameters_vector_upsampled.T) # # plot(parameters_vector_upsampled_reconstructed.T, 'g.') # # # # parameters_vector_reconstructed = zeros(shape(parameters_vector)) # for n in range(0, parameters_vector.shape[1]): # parameters_vector_reconstructed[:,n] = parameters_vector_upsampled_reconstructed[:,n*UpsamplingFactor] # # # mse_adm = mse(parameters_vector_reconstructed, parameters_vector) # # print "[II] Expected ADM reconstruction MSE: %.4f" % mse_adm # # # figure() # #plot(parameters_vector.T) # # plot(parameters_vector_reconstructed.T) # # print "[II] Building HMM transition, emission matrices and priors" # # transmat = zeros((3,3)) # startprob = zeros((3,)) # emissionmat = zeros((3, n_clusters)) # # # state_labels = parameters_vector_upsampled_code + 1 # stateseq = state_labels.T # # for n in range(0,shape(parameters_vector_upsampled_code)[1]): # if n>0: # transmat[state_labels[0,n-1],state_labels[0,n]] += 1 # startprob[state_labels[0,n]] +=1 # emissionmat[state_labels[0,n],feature_labels_upsampled[n]] += 1 # # # for n in range(0, transmat.shape[0]): # transmat[n,:]/=sum(transmat[n,:]) # emissionmat[n,:]/=sum(emissionmat[n,:]) # # # transmat = matrix(transmat) # emissionmat = matrix(emissionmat) # # Prior # startprob = startprob/sum(startprob) # startprob = ravel(startprob) # # # Vocabulary # # model = hmm.GMMHMM(n_mix=n_clusters, n_components=3, covariance_type="diag") # model.means_ = features_clustering.means_ # model.covars_ = features_clustering.covars_ # # features_vector_array = array(features_vector) # features_vector_upsampled_array=array(features_vector_upsampled) # # model.fit([features_vector_array.T]) # stateseq_estimated = model.predict(features_vector_upsampled_array.T) # # parameters_vector_upsampled_reconstructed_decoded = matrix(zeros(shape(parameters_vector_upsampled))) # # # plot(stateseq_estimated) # plot(stateseq) # # code_estimated = matrix(zeros(shape(parameters_vector_upsampled))) # code_estimated[0,:] = stateseq_estimated - 1 # # # # parameters_vector_upsampled_reconstructed_estimated = matrix(zeros(shape(parameters_vector_upsampled))) # # for i in range(0, parameters_vector_upsampled.shape[0]): # parameters_vector_upsampled_reconstructed_estimated[i,:] = adm_reconstruct(code_estimated,parameters_vector_upsampled_firstval[i,0], dmin=dmin,dmax=dmax) # figure() # plot(parameters_vector_upsampled_reconstructed_estimated.T) # plot(parameters_vector_upsampled.T)