view toolboxes/FullBNT-1.0.7/nethelp3.3/demhmc2.htm @ 0:cc4b1211e677 tip

initial commit to HG from Changeset: 646 (e263d8a21543) added further path and more save "camirversion.m"
author Daniel Wolff
date Fri, 19 Aug 2016 13:07:06 +0200
parents
children
line wrap: on
line source
<html>
<head>
<title>
Netlab Reference Manual demhmc2
</title>
</head>
<body>
<H1> demhmc2
</H1>
<h2>
Purpose
</h2>
Demonstrate Bayesian regression with Hybrid Monte Carlo sampling.

<p><h2>
Synopsis
</h2>
<PRE>
demhmc2</PRE>


<p><h2>
Description
</h2>
The problem consists of one input variable <CODE>x</CODE> and one target variable 
<CODE>t</CODE> with data generated by sampling <CODE>x</CODE> at equal intervals and then 
generating target data by computing <CODE>sin(2*pi*x)</CODE> and adding Gaussian 
noise. The model is a 2-layer network with linear outputs, and the hybrid Monte
Carlo algorithm (without persistence) is used to sample from the posterior
distribution of the weights.  The graph shows the underlying function,
100 samples from the function given by the posterior distribution of the
weights, and the average prediction (weighted by the posterior probabilities).

<p><h2>
See Also
</h2>
<CODE><a href="demhmc3.htm">demhmc3</a></CODE>, <CODE><a href="hmc.htm">hmc</a></CODE>, <CODE><a href="mlp.htm">mlp</a></CODE>, <CODE><a href="mlperr.htm">mlperr</a></CODE>, <CODE><a href="mlpgrad.htm">mlpgrad</a></CODE><hr>
<b>Pages:</b>
<a href="index.htm">Index</a>
<hr>
<p>Copyright (c) Ian T Nabney (1996-9)


</body>
</html>