Mercurial > hg > camir-ismir2012
view toolboxes/FullBNT-1.0.7/bnt/learning/learn_params.m @ 0:cc4b1211e677 tip
initial commit to HG from
Changeset:
646 (e263d8a21543) added further path and more save "camirversion.m"
author | Daniel Wolff |
---|---|
date | Fri, 19 Aug 2016 13:07:06 +0200 |
parents | |
children |
line wrap: on
line source
function bnet = learn_params(bnet, data) % LEARN_PARAMS Find the maximum likelihood params for a fully observed model % bnet = learn_params(bnet, data) % % data(i,m) is the value of node i in case m (can be a cell array) % % We set bnet.CPD{i} to its ML/MAP estimate. % % Currently we assume no param tying % AND THAT EACH DATA POINT IS A SCALAR - no longer assumed %if iscell(data) % data=cell2num(data); %end [n ncases] = size(data); for j=1:n e = bnet.equiv_class(j); assert(e==j); if adjustable_CPD(bnet.CPD{e}) fam = family(bnet.dag,j); %bnet.CPD{j} = learn_params(bnet.CPD{j}, data(fam,:)); bnet.CPD{j} = learn_params(bnet.CPD{j}, fam, data, bnet.node_sizes, bnet.cnodes); end end