annotate toolboxes/FullBNT-1.0.7/netlab3.3/mlpevfwd.m @ 0:cc4b1211e677 tip

initial commit to HG from Changeset: 646 (e263d8a21543) added further path and more save "camirversion.m"
author Daniel Wolff
date Fri, 19 Aug 2016 13:07:06 +0200
parents
children
rev   line source
Daniel@0 1 function [y, extra, invhess] = mlpevfwd(net, x, t, x_test, invhess)
Daniel@0 2 %MLPEVFWD Forward propagation with evidence for MLP
Daniel@0 3 %
Daniel@0 4 % Description
Daniel@0 5 % Y = MLPEVFWD(NET, X, T, X_TEST) takes a network data structure NET
Daniel@0 6 % together with the input X and target T training data and input test
Daniel@0 7 % data X_TEST. It returns the normal forward propagation through the
Daniel@0 8 % network Y together with a matrix EXTRA which consists of error bars
Daniel@0 9 % (variance) for a regression problem or moderated outputs for a
Daniel@0 10 % classification problem. The optional argument (and return value)
Daniel@0 11 % INVHESS is the inverse of the network Hessian computed on the
Daniel@0 12 % training data inputs and targets. Passing it in avoids recomputing
Daniel@0 13 % it, which can be a significant saving for large training sets.
Daniel@0 14 %
Daniel@0 15 % See also
Daniel@0 16 % FEVBAYES
Daniel@0 17 %
Daniel@0 18
Daniel@0 19 % Copyright (c) Ian T Nabney (1996-2001)
Daniel@0 20
Daniel@0 21 [y, z, a] = mlpfwd(net, x_test);
Daniel@0 22 if nargin == 4
Daniel@0 23 [extra, invhess] = fevbayes(net, y, a, x, t, x_test);
Daniel@0 24 else
Daniel@0 25 [extra, invhess] = fevbayes(net, y, a, x, t, x_test, invhess);
Daniel@0 26 end