Daniel@0: function [y, extra, invhess] = mlpevfwd(net, x, t, x_test, invhess) Daniel@0: %MLPEVFWD Forward propagation with evidence for MLP Daniel@0: % Daniel@0: % Description Daniel@0: % Y = MLPEVFWD(NET, X, T, X_TEST) takes a network data structure NET Daniel@0: % together with the input X and target T training data and input test Daniel@0: % data X_TEST. It returns the normal forward propagation through the Daniel@0: % network Y together with a matrix EXTRA which consists of error bars Daniel@0: % (variance) for a regression problem or moderated outputs for a Daniel@0: % classification problem. The optional argument (and return value) Daniel@0: % INVHESS is the inverse of the network Hessian computed on the Daniel@0: % training data inputs and targets. Passing it in avoids recomputing Daniel@0: % it, which can be a significant saving for large training sets. Daniel@0: % Daniel@0: % See also Daniel@0: % FEVBAYES Daniel@0: % Daniel@0: Daniel@0: % Copyright (c) Ian T Nabney (1996-2001) Daniel@0: Daniel@0: [y, z, a] = mlpfwd(net, x_test); Daniel@0: if nargin == 4 Daniel@0: [extra, invhess] = fevbayes(net, y, a, x, t, x_test); Daniel@0: else Daniel@0: [extra, invhess] = fevbayes(net, y, a, x, t, x_test, invhess); Daniel@0: end