annotate toolboxes/FullBNT-1.0.7/nethelp3.3/knn.htm @ 0:cc4b1211e677 tip

initial commit to HG from Changeset: 646 (e263d8a21543) added further path and more save "camirversion.m"
author Daniel Wolff
date Fri, 19 Aug 2016 13:07:06 +0200
parents
children
rev   line source
Daniel@0 1 <html>
Daniel@0 2 <head>
Daniel@0 3 <title>
Daniel@0 4 Netlab Reference Manual knn
Daniel@0 5 </title>
Daniel@0 6 </head>
Daniel@0 7 <body>
Daniel@0 8 <H1> knn
Daniel@0 9 </H1>
Daniel@0 10 <h2>
Daniel@0 11 Purpose
Daniel@0 12 </h2>
Daniel@0 13 Creates a K-nearest-neighbour classifier.
Daniel@0 14
Daniel@0 15 <p><h2>
Daniel@0 16 Synopsis
Daniel@0 17 </h2>
Daniel@0 18 <PRE>
Daniel@0 19
Daniel@0 20 net = knn(nin, nout, k, tr_in, tr_targets)
Daniel@0 21 </PRE>
Daniel@0 22
Daniel@0 23
Daniel@0 24 <p><h2>
Daniel@0 25 Description
Daniel@0 26 </h2>
Daniel@0 27 <CODE>net = knn(nin, nout, k, tr_in, tr_targets)</CODE> creates a KNN model <CODE>net</CODE>
Daniel@0 28 with input dimension <CODE>nin</CODE>, output dimension <CODE>nout</CODE> and <CODE>k</CODE>
Daniel@0 29 neighbours. The training data is also stored in the data structure and the
Daniel@0 30 targets are assumed to be using a 1-of-N coding.
Daniel@0 31
Daniel@0 32 <p>The fields in <CODE>net</CODE> are
Daniel@0 33 <PRE>
Daniel@0 34
Daniel@0 35 type = 'knn'
Daniel@0 36 nin = number of inputs
Daniel@0 37 nout = number of outputs
Daniel@0 38 tr_in = training input data
Daniel@0 39 tr_targets = training target data
Daniel@0 40 </PRE>
Daniel@0 41
Daniel@0 42
Daniel@0 43 <p><h2>
Daniel@0 44 See Also
Daniel@0 45 </h2>
Daniel@0 46 <CODE><a href="kmeans.htm">kmeans</a></CODE>, <CODE><a href="knnfwd.htm">knnfwd</a></CODE><hr>
Daniel@0 47 <b>Pages:</b>
Daniel@0 48 <a href="index.htm">Index</a>
Daniel@0 49 <hr>
Daniel@0 50 <p>Copyright (c) Ian T Nabney (1996-9)
Daniel@0 51
Daniel@0 52
Daniel@0 53 </body>
Daniel@0 54 </html>