Daniel@0: Daniel@0:
Daniel@0:Daniel@0: Daniel@0: net = knn(nin, nout, k, tr_in, tr_targets) Daniel@0:Daniel@0: Daniel@0: Daniel@0:
net = knn(nin, nout, k, tr_in, tr_targets)
creates a KNN model net
Daniel@0: with input dimension nin
, output dimension nout
and k
Daniel@0: neighbours. The training data is also stored in the data structure and the
Daniel@0: targets are assumed to be using a 1-of-N coding.
Daniel@0:
Daniel@0: The fields in net
are
Daniel@0:
Daniel@0: Daniel@0: type = 'knn' Daniel@0: nin = number of inputs Daniel@0: nout = number of outputs Daniel@0: tr_in = training input data Daniel@0: tr_targets = training target data Daniel@0:Daniel@0: Daniel@0: Daniel@0:
kmeans
, knnfwd
Copyright (c) Ian T Nabney (1996-9) Daniel@0: Daniel@0: Daniel@0: Daniel@0: