annotate toolboxes/FullBNT-1.0.7/graph/check_triangulated.m @ 0:cc4b1211e677 tip

initial commit to HG from Changeset: 646 (e263d8a21543) added further path and more save "camirversion.m"
author Daniel Wolff
date Fri, 19 Aug 2016 13:07:06 +0200
parents
children
rev   line source
Daniel@0 1 function [triangulated, order] = check_triangulated(G)
Daniel@0 2 % CHECK_TRIANGULATED Return 1 if G is a triangulated (chordal) graph, 0 otherwise.
Daniel@0 3 % [triangulated, order] = check_triangulated(G)
Daniel@0 4 %
Daniel@0 5 % A numbering alpha is perfect if Nbrs(alpha(i)) intersect {alpha(1)...alpha(i-1)} is complete.
Daniel@0 6 % A graph is triangulated iff it has a perfect numbering.
Daniel@0 7 % The Maximum Cardinality Search algorithm will create such a perfect numbering if possible.
Daniel@0 8 % See Golumbic, "Algorithmic Graph Theory and Perfect Graphs", Cambridge Univ. Press, 1985, p85.
Daniel@0 9 % or Castillo, Gutierrez and Hadi, "Expert systems and probabilistic network models", Springer 1997, p134.
Daniel@0 10
Daniel@0 11
Daniel@0 12 G = setdiag(G, 1);
Daniel@0 13 n = length(G);
Daniel@0 14 order = zeros(1,n);
Daniel@0 15 triangulated = 1;
Daniel@0 16 numbered = [1];
Daniel@0 17 order(1) = 1;
Daniel@0 18 for i=2:n
Daniel@0 19 U = mysetdiff(1:n, numbered); % unnumbered nodes
Daniel@0 20 score = zeros(1, length(U));
Daniel@0 21 for ui=1:length(U)
Daniel@0 22 u = U(ui);
Daniel@0 23 score(ui) = length(myintersect(neighbors(G, u), numbered));
Daniel@0 24 end
Daniel@0 25 u = U(argmax(score));
Daniel@0 26 numbered = [numbered u];
Daniel@0 27 order(i) = u;
Daniel@0 28 nns = myintersect(neighbors(G,u), order(1:i-1)); % numbered neighbors
Daniel@0 29 if ~isequal(G(nns,nns), ones(length(nns))) % ~complete(G(nns,nns))
Daniel@0 30 triangulated = 0;
Daniel@0 31 break;
Daniel@0 32 end
Daniel@0 33 end
Daniel@0 34