Daniel@0: function [triangulated, order] = check_triangulated(G) Daniel@0: % CHECK_TRIANGULATED Return 1 if G is a triangulated (chordal) graph, 0 otherwise. Daniel@0: % [triangulated, order] = check_triangulated(G) Daniel@0: % Daniel@0: % A numbering alpha is perfect if Nbrs(alpha(i)) intersect {alpha(1)...alpha(i-1)} is complete. Daniel@0: % A graph is triangulated iff it has a perfect numbering. Daniel@0: % The Maximum Cardinality Search algorithm will create such a perfect numbering if possible. Daniel@0: % See Golumbic, "Algorithmic Graph Theory and Perfect Graphs", Cambridge Univ. Press, 1985, p85. Daniel@0: % or Castillo, Gutierrez and Hadi, "Expert systems and probabilistic network models", Springer 1997, p134. Daniel@0: Daniel@0: Daniel@0: G = setdiag(G, 1); Daniel@0: n = length(G); Daniel@0: order = zeros(1,n); Daniel@0: triangulated = 1; Daniel@0: numbered = [1]; Daniel@0: order(1) = 1; Daniel@0: for i=2:n Daniel@0: U = mysetdiff(1:n, numbered); % unnumbered nodes Daniel@0: score = zeros(1, length(U)); Daniel@0: for ui=1:length(U) Daniel@0: u = U(ui); Daniel@0: score(ui) = length(myintersect(neighbors(G, u), numbered)); Daniel@0: end Daniel@0: u = U(argmax(score)); Daniel@0: numbered = [numbered u]; Daniel@0: order(i) = u; Daniel@0: nns = myintersect(neighbors(G,u), order(1:i-1)); % numbered neighbors Daniel@0: if ~isequal(G(nns,nns), ones(length(nns))) % ~complete(G(nns,nns)) Daniel@0: triangulated = 0; Daniel@0: break; Daniel@0: end Daniel@0: end Daniel@0: