annotate toolboxes/FullBNT-1.0.7/bnt/examples/static/mfa1.m @ 0:cc4b1211e677 tip

initial commit to HG from Changeset: 646 (e263d8a21543) added further path and more save "camirversion.m"
author Daniel Wolff
date Fri, 19 Aug 2016 13:07:06 +0200
parents
children
rev   line source
Daniel@0 1 % Factor analysis
Daniel@0 2 % Z -> X, Z in R^k, X in R^D, k << D (high dimensional observations explained by small source)
Daniel@0 3 % Z ~ N(0,I), X|Z ~ N(L z, Psi), where Psi is diagonal.
Daniel@0 4 %
Daniel@0 5 % Mixtures of FA
Daniel@0 6 % Now X|Z,W=i ~ N(mu(i) + L(i) Z, Psi(i))
Daniel@0 7 %
Daniel@0 8 % We compare to Zoubin Ghahramani's code.
Daniel@0 9
Daniel@0 10 randn('state', 0);
Daniel@0 11 max_iter = 3;
Daniel@0 12 M = 2;
Daniel@0 13 k = 3;
Daniel@0 14 D = 5;
Daniel@0 15
Daniel@0 16 n = 5;
Daniel@0 17 X1 = randn(n, D);
Daniel@0 18 X2 = randn(n, D) + 2; % move the mean to (2,2,2...)
Daniel@0 19 X = [X1; X2];
Daniel@0 20 N = size(X, 1);
Daniel@0 21
Daniel@0 22 % initialise as in mfa
Daniel@0 23 tiny=exp(-700);
Daniel@0 24 mX = mean(X);
Daniel@0 25 cX=cov(X);
Daniel@0 26 scale=det(cX)^(1/D);
Daniel@0 27 randn('state',0); % must reset seed here so initial params are identical to mfa
Daniel@0 28 L0=randn(D*M,k)*sqrt(scale/k);
Daniel@0 29 W0 = permute(reshape(L0, [D M k]), [1 3 2]); % use D,K,M
Daniel@0 30 Psi0=diag(cX)+tiny;
Daniel@0 31 Pi0=ones(M,1)/M;
Daniel@0 32 Mu0=randn(M,D)*sqrtm(cX)+ones(M,1)*mX;
Daniel@0 33
Daniel@0 34 [Lh1, Ph1, Mu1, Pi1, LL1] = mfa(X,M,k,max_iter);
Daniel@0 35 Lh1 = permute(reshape(Lh1, [D M k]), [1 3 2]); % use D,K,M
Daniel@0 36
Daniel@0 37
Daniel@0 38 ns = [M k D];
Daniel@0 39 dag = zeros(3);
Daniel@0 40 dag(1,3) = 1;
Daniel@0 41 dag(2,3) = 1;
Daniel@0 42 dnodes = 1;
Daniel@0 43 onodes = 3;
Daniel@0 44
Daniel@0 45 bnet = mk_bnet(dag, ns, 'discrete', dnodes, 'observed', onodes);
Daniel@0 46 bnet.CPD{1} = tabular_CPD(bnet, 1, Pi0);
Daniel@0 47
Daniel@0 48 %bnet.CPD{2} = gaussian_CPD(bnet, 2, zeros(k, 1), eye(k), [], 'diag', 'untied', 'clamp_mean', 'clamp_cov');
Daniel@0 49
Daniel@0 50 bnet.CPD{2} = gaussian_CPD(bnet, 2, 'mean', zeros(k, 1), 'cov', eye(k), 'cov_type', 'diag', ...
Daniel@0 51 'cov_prior_weight', 0, 'clamp_mean', 1, 'clamp_cov', 1);
Daniel@0 52
Daniel@0 53 %bnet.CPD{3} = gaussian_CPD(bnet, 3, Mu0', repmat(diag(Psi0), [1 1 M]), W0, 'diag', 'tied');
Daniel@0 54
Daniel@0 55 bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', Mu0', 'cov', repmat(diag(Psi0), [1 1 M]), ...
Daniel@0 56 'weights', W0, 'cov_type', 'diag', 'cov_prior_weight', 0, 'tied_cov', 1);
Daniel@0 57
Daniel@0 58 engine = jtree_inf_engine(bnet);
Daniel@0 59 evidence = cell(3, N);
Daniel@0 60 evidence(3,:) = num2cell(X', 1);
Daniel@0 61
Daniel@0 62 [bnet2, LL2, engine2] = learn_params_em(engine, evidence, max_iter);
Daniel@0 63
Daniel@0 64 s = struct(bnet2.CPD{1});
Daniel@0 65 Pi2 = s.CPT(:);
Daniel@0 66 s = struct(bnet2.CPD{3});
Daniel@0 67 Mu2 = s.mean;
Daniel@0 68 W2 = s.weights;
Daniel@0 69 Sigma2 = s.cov;
Daniel@0 70
Daniel@0 71
Daniel@0 72 % Compare to Zoubin's code
Daniel@0 73 assert(approxeq(LL1,LL2));
Daniel@0 74 for i=1:M
Daniel@0 75 assert(approxeq(W2(:,:,i), Lh1(:,:,i)));
Daniel@0 76 assert(approxeq(Sigma2(:,:,i), diag(Ph1)));
Daniel@0 77 assert(approxeq(Mu2(:,i), Mu1(i,:)));
Daniel@0 78 assert(approxeq(Pi2(:), Pi1(:)));
Daniel@0 79 end
Daniel@0 80