Daniel@0: % Factor analysis Daniel@0: % Z -> X, Z in R^k, X in R^D, k << D (high dimensional observations explained by small source) Daniel@0: % Z ~ N(0,I), X|Z ~ N(L z, Psi), where Psi is diagonal. Daniel@0: % Daniel@0: % Mixtures of FA Daniel@0: % Now X|Z,W=i ~ N(mu(i) + L(i) Z, Psi(i)) Daniel@0: % Daniel@0: % We compare to Zoubin Ghahramani's code. Daniel@0: Daniel@0: randn('state', 0); Daniel@0: max_iter = 3; Daniel@0: M = 2; Daniel@0: k = 3; Daniel@0: D = 5; Daniel@0: Daniel@0: n = 5; Daniel@0: X1 = randn(n, D); Daniel@0: X2 = randn(n, D) + 2; % move the mean to (2,2,2...) Daniel@0: X = [X1; X2]; Daniel@0: N = size(X, 1); Daniel@0: Daniel@0: % initialise as in mfa Daniel@0: tiny=exp(-700); Daniel@0: mX = mean(X); Daniel@0: cX=cov(X); Daniel@0: scale=det(cX)^(1/D); Daniel@0: randn('state',0); % must reset seed here so initial params are identical to mfa Daniel@0: L0=randn(D*M,k)*sqrt(scale/k); Daniel@0: W0 = permute(reshape(L0, [D M k]), [1 3 2]); % use D,K,M Daniel@0: Psi0=diag(cX)+tiny; Daniel@0: Pi0=ones(M,1)/M; Daniel@0: Mu0=randn(M,D)*sqrtm(cX)+ones(M,1)*mX; Daniel@0: Daniel@0: [Lh1, Ph1, Mu1, Pi1, LL1] = mfa(X,M,k,max_iter); Daniel@0: Lh1 = permute(reshape(Lh1, [D M k]), [1 3 2]); % use D,K,M Daniel@0: Daniel@0: Daniel@0: ns = [M k D]; Daniel@0: dag = zeros(3); Daniel@0: dag(1,3) = 1; Daniel@0: dag(2,3) = 1; Daniel@0: dnodes = 1; Daniel@0: onodes = 3; Daniel@0: Daniel@0: bnet = mk_bnet(dag, ns, 'discrete', dnodes, 'observed', onodes); Daniel@0: bnet.CPD{1} = tabular_CPD(bnet, 1, Pi0); Daniel@0: Daniel@0: %bnet.CPD{2} = gaussian_CPD(bnet, 2, zeros(k, 1), eye(k), [], 'diag', 'untied', 'clamp_mean', 'clamp_cov'); Daniel@0: Daniel@0: bnet.CPD{2} = gaussian_CPD(bnet, 2, 'mean', zeros(k, 1), 'cov', eye(k), 'cov_type', 'diag', ... Daniel@0: 'cov_prior_weight', 0, 'clamp_mean', 1, 'clamp_cov', 1); Daniel@0: Daniel@0: %bnet.CPD{3} = gaussian_CPD(bnet, 3, Mu0', repmat(diag(Psi0), [1 1 M]), W0, 'diag', 'tied'); Daniel@0: Daniel@0: bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', Mu0', 'cov', repmat(diag(Psi0), [1 1 M]), ... Daniel@0: 'weights', W0, 'cov_type', 'diag', 'cov_prior_weight', 0, 'tied_cov', 1); Daniel@0: Daniel@0: engine = jtree_inf_engine(bnet); Daniel@0: evidence = cell(3, N); Daniel@0: evidence(3,:) = num2cell(X', 1); Daniel@0: Daniel@0: [bnet2, LL2, engine2] = learn_params_em(engine, evidence, max_iter); Daniel@0: Daniel@0: s = struct(bnet2.CPD{1}); Daniel@0: Pi2 = s.CPT(:); Daniel@0: s = struct(bnet2.CPD{3}); Daniel@0: Mu2 = s.mean; Daniel@0: W2 = s.weights; Daniel@0: Sigma2 = s.cov; Daniel@0: Daniel@0: Daniel@0: % Compare to Zoubin's code Daniel@0: assert(approxeq(LL1,LL2)); Daniel@0: for i=1:M Daniel@0: assert(approxeq(W2(:,:,i), Lh1(:,:,i))); Daniel@0: assert(approxeq(Sigma2(:,:,i), diag(Ph1))); Daniel@0: assert(approxeq(Mu2(:,i), Mu1(i,:))); Daniel@0: assert(approxeq(Pi2(:), Pi1(:))); Daniel@0: end Daniel@0: