annotate toolboxes/FullBNT-1.0.7/bnt/examples/static/fa1.m @ 0:cc4b1211e677 tip

initial commit to HG from Changeset: 646 (e263d8a21543) added further path and more save "camirversion.m"
author Daniel Wolff
date Fri, 19 Aug 2016 13:07:06 +0200
parents
children
rev   line source
Daniel@0 1 % Factor analysis
Daniel@0 2 % Z -> X, Z in R^k, X in R^D, k << D (high dimensional observations explained by small source)
Daniel@0 3 % Z ~ N(0,I), X|Z ~ N(L z, Psi), where Psi is diagonal.
Daniel@0 4 %
Daniel@0 5 % We compare to Zoubin Ghahramani's code.
Daniel@0 6
Daniel@0 7 state = 0;
Daniel@0 8 rand('seed', state);
Daniel@0 9 randn('seed', state);
Daniel@0 10 max_iter = 3;
Daniel@0 11 k = 2;
Daniel@0 12 D = 4;
Daniel@0 13 N = 10;
Daniel@0 14 X = randn(N, D);
Daniel@0 15
Daniel@0 16 % Initialize as in Zoubin's ffa (fast factor analysis)
Daniel@0 17 X=X-ones(N,1)*mean(X);
Daniel@0 18 XX=X'*X/N;
Daniel@0 19 diagXX=diag(XX);
Daniel@0 20 cX=cov(X);
Daniel@0 21 scale=det(cX)^(1/D);
Daniel@0 22 randn('seed', 0); % must reset seed here so initial params are identical to mfa
Daniel@0 23 L0=randn(D,k)*sqrt(scale/k);
Daniel@0 24 W0 = L0;
Daniel@0 25 Psi0=diag(cX);
Daniel@0 26
Daniel@0 27 [L1, Psi1, LL1] = ffa(X,k,max_iter);
Daniel@0 28
Daniel@0 29
Daniel@0 30 ns = [k D];
Daniel@0 31 dag = zeros(2,2);
Daniel@0 32 dag(1,2) = 1;
Daniel@0 33 bnet = mk_bnet(dag, ns, 'discrete', [], 'observed', 2);
Daniel@0 34 bnet.CPD{1} = gaussian_CPD(bnet, 1, 'mean', zeros(k,1), 'cov', eye(k), 'cov_type', 'diag', ...
Daniel@0 35 'clamp_mean', 1, 'clamp_cov', 1);
Daniel@0 36 bnet.CPD{2} = gaussian_CPD(bnet, 2, 'mean', zeros(D,1), 'cov', diag(Psi0), 'weights', W0, ...
Daniel@0 37 'cov_type', 'diag', 'cov_prior_weight', 0, 'clamp_mean', 1);
Daniel@0 38
Daniel@0 39 engine = jtree_inf_engine(bnet);
Daniel@0 40 evidence = cell(2,N);
Daniel@0 41 evidence(2,:) = num2cell(X', 1);
Daniel@0 42
Daniel@0 43 [bnet2, LL2] = learn_params_em(engine, evidence, max_iter);
Daniel@0 44
Daniel@0 45 s = struct(bnet2.CPD{2});
Daniel@0 46 L2 = s.weights;
Daniel@0 47 Psi2 = s.cov;
Daniel@0 48
Daniel@0 49
Daniel@0 50
Daniel@0 51 % Compare to Zoubin's code
Daniel@0 52 assert(approxeq(LL2, LL1));
Daniel@0 53 assert(approxeq(Psi2, diag(Psi1)));
Daniel@0 54 assert(approxeq(L2, L1));
Daniel@0 55
Daniel@0 56
Daniel@0 57