Daniel@0: % Factor analysis Daniel@0: % Z -> X, Z in R^k, X in R^D, k << D (high dimensional observations explained by small source) Daniel@0: % Z ~ N(0,I), X|Z ~ N(L z, Psi), where Psi is diagonal. Daniel@0: % Daniel@0: % We compare to Zoubin Ghahramani's code. Daniel@0: Daniel@0: state = 0; Daniel@0: rand('seed', state); Daniel@0: randn('seed', state); Daniel@0: max_iter = 3; Daniel@0: k = 2; Daniel@0: D = 4; Daniel@0: N = 10; Daniel@0: X = randn(N, D); Daniel@0: Daniel@0: % Initialize as in Zoubin's ffa (fast factor analysis) Daniel@0: X=X-ones(N,1)*mean(X); Daniel@0: XX=X'*X/N; Daniel@0: diagXX=diag(XX); Daniel@0: cX=cov(X); Daniel@0: scale=det(cX)^(1/D); Daniel@0: randn('seed', 0); % must reset seed here so initial params are identical to mfa Daniel@0: L0=randn(D,k)*sqrt(scale/k); Daniel@0: W0 = L0; Daniel@0: Psi0=diag(cX); Daniel@0: Daniel@0: [L1, Psi1, LL1] = ffa(X,k,max_iter); Daniel@0: Daniel@0: Daniel@0: ns = [k D]; Daniel@0: dag = zeros(2,2); Daniel@0: dag(1,2) = 1; Daniel@0: bnet = mk_bnet(dag, ns, 'discrete', [], 'observed', 2); Daniel@0: bnet.CPD{1} = gaussian_CPD(bnet, 1, 'mean', zeros(k,1), 'cov', eye(k), 'cov_type', 'diag', ... Daniel@0: 'clamp_mean', 1, 'clamp_cov', 1); Daniel@0: bnet.CPD{2} = gaussian_CPD(bnet, 2, 'mean', zeros(D,1), 'cov', diag(Psi0), 'weights', W0, ... Daniel@0: 'cov_type', 'diag', 'cov_prior_weight', 0, 'clamp_mean', 1); Daniel@0: Daniel@0: engine = jtree_inf_engine(bnet); Daniel@0: evidence = cell(2,N); Daniel@0: evidence(2,:) = num2cell(X', 1); Daniel@0: Daniel@0: [bnet2, LL2] = learn_params_em(engine, evidence, max_iter); Daniel@0: Daniel@0: s = struct(bnet2.CPD{2}); Daniel@0: L2 = s.weights; Daniel@0: Psi2 = s.cov; Daniel@0: Daniel@0: Daniel@0: Daniel@0: % Compare to Zoubin's code Daniel@0: assert(approxeq(LL2, LL1)); Daniel@0: assert(approxeq(Psi2, diag(Psi1))); Daniel@0: assert(approxeq(L2, L1)); Daniel@0: Daniel@0: Daniel@0: