annotate toolboxes/FullBNT-1.0.7/bnt/examples/static/cmp_inference_static.m @ 0:cc4b1211e677 tip

initial commit to HG from Changeset: 646 (e263d8a21543) added further path and more save "camirversion.m"
author Daniel Wolff
date Fri, 19 Aug 2016 13:07:06 +0200
parents
children
rev   line source
Daniel@0 1 function [time, engine] = cmp_inference_static(bnet, engine, varargin)
Daniel@0 2 % CMP_INFERENCE Compare several inference engines on a BN
Daniel@0 3 % function [time, engine] = cmp_inference_static(bnet, engine, ...)
Daniel@0 4 %
Daniel@0 5 % engine{i} is the i'th inference engine.
Daniel@0 6 % time(e) = elapsed time for doing inference with engine e
Daniel@0 7 %
Daniel@0 8 % The list below gives optional arguments [default value in brackets].
Daniel@0 9 %
Daniel@0 10 % exact - specifies which engines do exact inference [ 1:length(engine) ]
Daniel@0 11 % singletons_only - if 1, we only call marginal_nodes, else this and marginal_family [0]
Daniel@0 12 % maximize - 1 means we do max-propagation, 0 means sum-propagation [0]
Daniel@0 13 % check_ll - 1 means we check that the log-likelihoods are correct [1]
Daniel@0 14 % observed - list of the observed ndoes [ bnet.observed ]
Daniel@0 15 % check_converged - list of loopy engines that should be checked for convergence [ [] ]
Daniel@0 16 % If an engine has converged, it is added to the exact list.
Daniel@0 17
Daniel@0 18
Daniel@0 19 % set default params
Daniel@0 20 exact = 1:length(engine);
Daniel@0 21 singletons_only = 0;
Daniel@0 22 maximize = 0;
Daniel@0 23 check_ll = 1;
Daniel@0 24 observed = bnet.observed;
Daniel@0 25 check_converged = [];
Daniel@0 26
Daniel@0 27 args = varargin;
Daniel@0 28 nargs = length(args);
Daniel@0 29 for i=1:2:nargs
Daniel@0 30 switch args{i},
Daniel@0 31 case 'exact', exact = args{i+1};
Daniel@0 32 case 'singletons_only', singletons_only = args{i+1};
Daniel@0 33 case 'maximize', maximize = args{i+1};
Daniel@0 34 case 'check_ll', check_ll = args{i+1};
Daniel@0 35 case 'observed', observed = args{i+1};
Daniel@0 36 case 'check_converged', check_converged = args{i+1};
Daniel@0 37 otherwise,
Daniel@0 38 error(['unrecognized argument ' args{i}])
Daniel@0 39 end
Daniel@0 40 end
Daniel@0 41
Daniel@0 42 E = length(engine);
Daniel@0 43 ref = exact(1); % reference
Daniel@0 44
Daniel@0 45 N = length(bnet.dag);
Daniel@0 46 ev = sample_bnet(bnet);
Daniel@0 47 evidence = cell(1,N);
Daniel@0 48 evidence(observed) = ev(observed);
Daniel@0 49 %celldisp(evidence(observed))
Daniel@0 50
Daniel@0 51 for i=1:E
Daniel@0 52 tic;
Daniel@0 53 if check_ll
Daniel@0 54 [engine{i}, ll(i)] = enter_evidence(engine{i}, evidence, 'maximize', maximize);
Daniel@0 55 else
Daniel@0 56 engine{i} = enter_evidence(engine{i}, evidence, 'maximize', maximize);
Daniel@0 57 end
Daniel@0 58 time(i)=toc;
Daniel@0 59 end
Daniel@0 60
Daniel@0 61 for i=check_converged(:)'
Daniel@0 62 niter = loopy_converged(engine{i});
Daniel@0 63 if niter > 0
Daniel@0 64 fprintf('loopy engine %d converged in %d iterations\n', i, niter);
Daniel@0 65 % exact = myunion(exact, i);
Daniel@0 66 else
Daniel@0 67 fprintf('loopy engine %d has not converged\n', i);
Daniel@0 68 end
Daniel@0 69 end
Daniel@0 70
Daniel@0 71 cmp = exact(2:end);
Daniel@0 72 if check_ll
Daniel@0 73 for i=cmp(:)'
Daniel@0 74 assert(approxeq(ll(ref), ll(i)));
Daniel@0 75 end
Daniel@0 76 end
Daniel@0 77
Daniel@0 78 hnodes = mysetdiff(1:N, observed);
Daniel@0 79
Daniel@0 80 if ~singletons_only
Daniel@0 81 get_marginals(engine, hnodes, exact, 0);
Daniel@0 82 end
Daniel@0 83 get_marginals(engine, hnodes, exact, 1);
Daniel@0 84
Daniel@0 85 %%%%%%%%%%
Daniel@0 86
Daniel@0 87 function get_marginals(engine, hnodes, exact, singletons)
Daniel@0 88
Daniel@0 89 bnet = bnet_from_engine(engine{1});
Daniel@0 90 N = length(bnet.dag);
Daniel@0 91 cnodes_bitv = zeros(1,N);
Daniel@0 92 cnodes_bitv(bnet.cnodes) = 1;
Daniel@0 93 ref = exact(1); % reference
Daniel@0 94 cmp = exact(2:end);
Daniel@0 95 E = length(engine);
Daniel@0 96
Daniel@0 97 for n=hnodes(:)'
Daniel@0 98 for e=1:E
Daniel@0 99 if singletons
Daniel@0 100 m{e} = marginal_nodes(engine{e}, n);
Daniel@0 101 else
Daniel@0 102 m{e} = marginal_family(engine{e}, n);
Daniel@0 103 end
Daniel@0 104 end
Daniel@0 105 for e=cmp(:)'
Daniel@0 106 if cnodes_bitv(n)
Daniel@0 107 assert(approxeq(m{ref}.mu, m{e}.mu))
Daniel@0 108 assert(approxeq(m{ref}.Sigma, m{e}.Sigma))
Daniel@0 109 else
Daniel@0 110 assert(approxeq(m{ref}.T, m{e}.T))
Daniel@0 111 end
Daniel@0 112 assert(isequal(m{e}.domain, m{ref}.domain));
Daniel@0 113 end
Daniel@0 114 end