Daniel@0: function [time, engine] = cmp_inference_static(bnet, engine, varargin) Daniel@0: % CMP_INFERENCE Compare several inference engines on a BN Daniel@0: % function [time, engine] = cmp_inference_static(bnet, engine, ...) Daniel@0: % Daniel@0: % engine{i} is the i'th inference engine. Daniel@0: % time(e) = elapsed time for doing inference with engine e Daniel@0: % Daniel@0: % The list below gives optional arguments [default value in brackets]. Daniel@0: % Daniel@0: % exact - specifies which engines do exact inference [ 1:length(engine) ] Daniel@0: % singletons_only - if 1, we only call marginal_nodes, else this and marginal_family [0] Daniel@0: % maximize - 1 means we do max-propagation, 0 means sum-propagation [0] Daniel@0: % check_ll - 1 means we check that the log-likelihoods are correct [1] Daniel@0: % observed - list of the observed ndoes [ bnet.observed ] Daniel@0: % check_converged - list of loopy engines that should be checked for convergence [ [] ] Daniel@0: % If an engine has converged, it is added to the exact list. Daniel@0: Daniel@0: Daniel@0: % set default params Daniel@0: exact = 1:length(engine); Daniel@0: singletons_only = 0; Daniel@0: maximize = 0; Daniel@0: check_ll = 1; Daniel@0: observed = bnet.observed; Daniel@0: check_converged = []; Daniel@0: Daniel@0: args = varargin; Daniel@0: nargs = length(args); Daniel@0: for i=1:2:nargs Daniel@0: switch args{i}, Daniel@0: case 'exact', exact = args{i+1}; Daniel@0: case 'singletons_only', singletons_only = args{i+1}; Daniel@0: case 'maximize', maximize = args{i+1}; Daniel@0: case 'check_ll', check_ll = args{i+1}; Daniel@0: case 'observed', observed = args{i+1}; Daniel@0: case 'check_converged', check_converged = args{i+1}; Daniel@0: otherwise, Daniel@0: error(['unrecognized argument ' args{i}]) Daniel@0: end Daniel@0: end Daniel@0: Daniel@0: E = length(engine); Daniel@0: ref = exact(1); % reference Daniel@0: Daniel@0: N = length(bnet.dag); Daniel@0: ev = sample_bnet(bnet); Daniel@0: evidence = cell(1,N); Daniel@0: evidence(observed) = ev(observed); Daniel@0: %celldisp(evidence(observed)) Daniel@0: Daniel@0: for i=1:E Daniel@0: tic; Daniel@0: if check_ll Daniel@0: [engine{i}, ll(i)] = enter_evidence(engine{i}, evidence, 'maximize', maximize); Daniel@0: else Daniel@0: engine{i} = enter_evidence(engine{i}, evidence, 'maximize', maximize); Daniel@0: end Daniel@0: time(i)=toc; Daniel@0: end Daniel@0: Daniel@0: for i=check_converged(:)' Daniel@0: niter = loopy_converged(engine{i}); Daniel@0: if niter > 0 Daniel@0: fprintf('loopy engine %d converged in %d iterations\n', i, niter); Daniel@0: % exact = myunion(exact, i); Daniel@0: else Daniel@0: fprintf('loopy engine %d has not converged\n', i); Daniel@0: end Daniel@0: end Daniel@0: Daniel@0: cmp = exact(2:end); Daniel@0: if check_ll Daniel@0: for i=cmp(:)' Daniel@0: assert(approxeq(ll(ref), ll(i))); Daniel@0: end Daniel@0: end Daniel@0: Daniel@0: hnodes = mysetdiff(1:N, observed); Daniel@0: Daniel@0: if ~singletons_only Daniel@0: get_marginals(engine, hnodes, exact, 0); Daniel@0: end Daniel@0: get_marginals(engine, hnodes, exact, 1); Daniel@0: Daniel@0: %%%%%%%%%% Daniel@0: Daniel@0: function get_marginals(engine, hnodes, exact, singletons) Daniel@0: Daniel@0: bnet = bnet_from_engine(engine{1}); Daniel@0: N = length(bnet.dag); Daniel@0: cnodes_bitv = zeros(1,N); Daniel@0: cnodes_bitv(bnet.cnodes) = 1; Daniel@0: ref = exact(1); % reference Daniel@0: cmp = exact(2:end); Daniel@0: E = length(engine); Daniel@0: Daniel@0: for n=hnodes(:)' Daniel@0: for e=1:E Daniel@0: if singletons Daniel@0: m{e} = marginal_nodes(engine{e}, n); Daniel@0: else Daniel@0: m{e} = marginal_family(engine{e}, n); Daniel@0: end Daniel@0: end Daniel@0: for e=cmp(:)' Daniel@0: if cnodes_bitv(n) Daniel@0: assert(approxeq(m{ref}.mu, m{e}.mu)) Daniel@0: assert(approxeq(m{ref}.Sigma, m{e}.Sigma)) Daniel@0: else Daniel@0: assert(approxeq(m{ref}.T, m{e}.T)) Daniel@0: end Daniel@0: assert(isequal(m{e}.domain, m{ref}.domain)); Daniel@0: end Daniel@0: end