annotate toolboxes/FullBNT-1.0.7/bnt/examples/dynamic/Old/scg_dbn.m @ 0:cc4b1211e677 tip

initial commit to HG from Changeset: 646 (e263d8a21543) added further path and more save "camirversion.m"
author Daniel Wolff
date Fri, 19 Aug 2016 13:07:06 +0200
parents
children
rev   line source
Daniel@0 1 % to test whether scg inference engine can handl dynameic BN
Daniel@0 2 % Make a linear dynamical system
Daniel@0 3 % X1 -> X2
Daniel@0 4 % | |
Daniel@0 5 % v v
Daniel@0 6 % Y1 Y2
Daniel@0 7
Daniel@0 8 intra = zeros(2);
Daniel@0 9 intra(1,2) = 1;
Daniel@0 10 inter = zeros(2);
Daniel@0 11 inter(1,1) = 1;
Daniel@0 12 n = 2;
Daniel@0 13
Daniel@0 14 X = 2; % size of hidden state
Daniel@0 15 Y = 2; % size of observable state
Daniel@0 16
Daniel@0 17 ns = [X Y];
Daniel@0 18 dnodes = [];
Daniel@0 19 onodes = [2];
Daniel@0 20 eclass1 = [1 2];
Daniel@0 21 eclass2 = [3 2];
Daniel@0 22 bnet = mk_dbn(intra, inter, ns, dnodes, eclass1, eclass2);
Daniel@0 23
Daniel@0 24 x0 = rand(X,1);
Daniel@0 25 V0 = eye(X);
Daniel@0 26 C0 = rand(Y,X);
Daniel@0 27 R0 = eye(Y);
Daniel@0 28 A0 = rand(X,X);
Daniel@0 29 Q0 = eye(X);
Daniel@0 30
Daniel@0 31 bnet.CPD{1} = gaussian_CPD(bnet, 1, 'mean', x0, 'cov', V0);
Daniel@0 32 %bnet.CPD{2} = gaussian_CPD(bnet, 2, 'mean', zeros(Y,1), 'cov', R0, 'weights', C0, 'full', 'untied', 'clamped_mean');
Daniel@0 33 %bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', zeros(X,1), 'cov', Q0, 'weights', A0, 'full', 'untied', 'clamped_mean');
Daniel@0 34 bnet.CPD{2} = gaussian_CPD(bnet, 2, 'mean', zeros(Y,1), 'cov', R0, 'weights', C0);
Daniel@0 35 bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', zeros(X,1), 'cov', Q0, 'weights', A0);
Daniel@0 36
Daniel@0 37
Daniel@0 38 T = 5; % fixed length sequences
Daniel@0 39
Daniel@0 40 clear engine;
Daniel@0 41 %engine{1} = kalman_inf_engine(bnet, onodes);
Daniel@0 42 engine{1} = scg_unrolled_dbn_inf_engine(bnet, T, onodes);
Daniel@0 43 engine{2} = jtree_unrolled_dbn_inf_engine(bnet, T);
Daniel@0 44
Daniel@0 45 N = length(engine);
Daniel@0 46
Daniel@0 47 % inference
Daniel@0 48
Daniel@0 49 ev = sample_dbn(bnet, T);
Daniel@0 50 evidence = cell(n,T);
Daniel@0 51 evidence(onodes,:) = ev(onodes, :);
Daniel@0 52
Daniel@0 53 t = 2;
Daniel@0 54 query = [1 3];
Daniel@0 55 m = cell(1, N);
Daniel@0 56 ll = zeros(1, N);
Daniel@0 57
Daniel@0 58 engine{1} = enter_evidence(engine{1}, evidence);
Daniel@0 59 [engine{2}, ll(2)] = enter_evidence(engine{2}, evidence);
Daniel@0 60 m{1} = marginal_nodes(engine{1}, query);
Daniel@0 61 m{2} = marginal_nodes(engine{2}, query, t);
Daniel@0 62
Daniel@0 63
Daniel@0 64 % compare all engines to engine{1}
Daniel@0 65 for i=2:N
Daniel@0 66 assert(approxeq(m{1}.mu, m{i}.mu));
Daniel@0 67 assert(approxeq(m{1}.Sigma, m{i}.Sigma));
Daniel@0 68 % assert(approxeq(ll(1), ll(i)));
Daniel@0 69 end
Daniel@0 70