Daniel@0: % to test whether scg inference engine can handl dynameic BN Daniel@0: % Make a linear dynamical system Daniel@0: % X1 -> X2 Daniel@0: % | | Daniel@0: % v v Daniel@0: % Y1 Y2 Daniel@0: Daniel@0: intra = zeros(2); Daniel@0: intra(1,2) = 1; Daniel@0: inter = zeros(2); Daniel@0: inter(1,1) = 1; Daniel@0: n = 2; Daniel@0: Daniel@0: X = 2; % size of hidden state Daniel@0: Y = 2; % size of observable state Daniel@0: Daniel@0: ns = [X Y]; Daniel@0: dnodes = []; Daniel@0: onodes = [2]; Daniel@0: eclass1 = [1 2]; Daniel@0: eclass2 = [3 2]; Daniel@0: bnet = mk_dbn(intra, inter, ns, dnodes, eclass1, eclass2); Daniel@0: Daniel@0: x0 = rand(X,1); Daniel@0: V0 = eye(X); Daniel@0: C0 = rand(Y,X); Daniel@0: R0 = eye(Y); Daniel@0: A0 = rand(X,X); Daniel@0: Q0 = eye(X); Daniel@0: Daniel@0: bnet.CPD{1} = gaussian_CPD(bnet, 1, 'mean', x0, 'cov', V0); Daniel@0: %bnet.CPD{2} = gaussian_CPD(bnet, 2, 'mean', zeros(Y,1), 'cov', R0, 'weights', C0, 'full', 'untied', 'clamped_mean'); Daniel@0: %bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', zeros(X,1), 'cov', Q0, 'weights', A0, 'full', 'untied', 'clamped_mean'); Daniel@0: bnet.CPD{2} = gaussian_CPD(bnet, 2, 'mean', zeros(Y,1), 'cov', R0, 'weights', C0); Daniel@0: bnet.CPD{3} = gaussian_CPD(bnet, 3, 'mean', zeros(X,1), 'cov', Q0, 'weights', A0); Daniel@0: Daniel@0: Daniel@0: T = 5; % fixed length sequences Daniel@0: Daniel@0: clear engine; Daniel@0: %engine{1} = kalman_inf_engine(bnet, onodes); Daniel@0: engine{1} = scg_unrolled_dbn_inf_engine(bnet, T, onodes); Daniel@0: engine{2} = jtree_unrolled_dbn_inf_engine(bnet, T); Daniel@0: Daniel@0: N = length(engine); Daniel@0: Daniel@0: % inference Daniel@0: Daniel@0: ev = sample_dbn(bnet, T); Daniel@0: evidence = cell(n,T); Daniel@0: evidence(onodes,:) = ev(onodes, :); Daniel@0: Daniel@0: t = 2; Daniel@0: query = [1 3]; Daniel@0: m = cell(1, N); Daniel@0: ll = zeros(1, N); Daniel@0: Daniel@0: engine{1} = enter_evidence(engine{1}, evidence); Daniel@0: [engine{2}, ll(2)] = enter_evidence(engine{2}, evidence); Daniel@0: m{1} = marginal_nodes(engine{1}, query); Daniel@0: m{2} = marginal_nodes(engine{2}, query, t); Daniel@0: Daniel@0: Daniel@0: % compare all engines to engine{1} Daniel@0: for i=2:N Daniel@0: assert(approxeq(m{1}.mu, m{i}.mu)); Daniel@0: assert(approxeq(m{1}.Sigma, m{i}.Sigma)); Daniel@0: % assert(approxeq(ll(1), ll(i))); Daniel@0: end Daniel@0: