annotate toolboxes/FullBNT-1.0.7/KPMstats/sample_discrete.m @ 0:cc4b1211e677 tip

initial commit to HG from Changeset: 646 (e263d8a21543) added further path and more save "camirversion.m"
author Daniel Wolff
date Fri, 19 Aug 2016 13:07:06 +0200
parents
children
rev   line source
Daniel@0 1 function M = sample_discrete(prob, r, c)
Daniel@0 2 % SAMPLE_DISCRETE Like the built in 'rand', except we draw from a non-uniform discrete distrib.
Daniel@0 3 % M = sample_discrete(prob, r, c)
Daniel@0 4 %
Daniel@0 5 % Example: sample_discrete([0.8 0.2], 1, 10) generates a row vector of 10 random integers from {1,2},
Daniel@0 6 % where the prob. of being 1 is 0.8 and the prob of being 2 is 0.2.
Daniel@0 7
Daniel@0 8 n = length(prob);
Daniel@0 9
Daniel@0 10 if nargin == 1
Daniel@0 11 r = 1; c = 1;
Daniel@0 12 elseif nargin == 2
Daniel@0 13 c == r;
Daniel@0 14 end
Daniel@0 15
Daniel@0 16 R = rand(r, c);
Daniel@0 17 M = ones(r, c);
Daniel@0 18 cumprob = cumsum(prob(:));
Daniel@0 19
Daniel@0 20 if n < r*c
Daniel@0 21 for i = 1:n-1
Daniel@0 22 M = M + (R > cumprob(i));
Daniel@0 23 end
Daniel@0 24 else
Daniel@0 25 % loop over the smaller index - can be much faster if length(prob) >> r*c
Daniel@0 26 cumprob2 = cumprob(1:end-1);
Daniel@0 27 for i=1:r
Daniel@0 28 for j=1:c
Daniel@0 29 M(i,j) = sum(R(i,j) > cumprob2)+1;
Daniel@0 30 end
Daniel@0 31 end
Daniel@0 32 end
Daniel@0 33
Daniel@0 34
Daniel@0 35 % Slower, even though vectorized
Daniel@0 36 %cumprob = reshape(cumsum([0 prob(1:end-1)]), [1 1 n]);
Daniel@0 37 %M = sum(R(:,:,ones(n,1)) > cumprob(ones(r,1),ones(c,1),:), 3);
Daniel@0 38
Daniel@0 39 % convert using a binning algorithm
Daniel@0 40 %M=bindex(R,cumprob);