Daniel@0: function M = sample_discrete(prob, r, c) Daniel@0: % SAMPLE_DISCRETE Like the built in 'rand', except we draw from a non-uniform discrete distrib. Daniel@0: % M = sample_discrete(prob, r, c) Daniel@0: % Daniel@0: % Example: sample_discrete([0.8 0.2], 1, 10) generates a row vector of 10 random integers from {1,2}, Daniel@0: % where the prob. of being 1 is 0.8 and the prob of being 2 is 0.2. Daniel@0: Daniel@0: n = length(prob); Daniel@0: Daniel@0: if nargin == 1 Daniel@0: r = 1; c = 1; Daniel@0: elseif nargin == 2 Daniel@0: c == r; Daniel@0: end Daniel@0: Daniel@0: R = rand(r, c); Daniel@0: M = ones(r, c); Daniel@0: cumprob = cumsum(prob(:)); Daniel@0: Daniel@0: if n < r*c Daniel@0: for i = 1:n-1 Daniel@0: M = M + (R > cumprob(i)); Daniel@0: end Daniel@0: else Daniel@0: % loop over the smaller index - can be much faster if length(prob) >> r*c Daniel@0: cumprob2 = cumprob(1:end-1); Daniel@0: for i=1:r Daniel@0: for j=1:c Daniel@0: M(i,j) = sum(R(i,j) > cumprob2)+1; Daniel@0: end Daniel@0: end Daniel@0: end Daniel@0: Daniel@0: Daniel@0: % Slower, even though vectorized Daniel@0: %cumprob = reshape(cumsum([0 prob(1:end-1)]), [1 1 n]); Daniel@0: %M = sum(R(:,:,ones(n,1)) > cumprob(ones(r,1),ones(c,1),:), 3); Daniel@0: Daniel@0: % convert using a binning algorithm Daniel@0: %M=bindex(R,cumprob);