Mercurial > hg > camir-aes2014
view toolboxes/MIRtoolbox1.3.2/somtoolbox/som_kmeanscolor2.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [color,centroids]=som_kmeanscolor2(mode,sM,C,initRGB,contrast,R) % SOM_KMEANSCOLOR2 Color codes a SOM according to averaged or best K-means clustering % % color = som_kmeanscolor2('average',sM, C, [initRGB], [contrast],[R]) % % color=som_kmeanscolor2('average',sM,[2 4 8 16],som_colorcode(sM,'rgb1'),'enhanced'); % [color,centroid]=som_kmeanscolor2('best',sM,15,[],'flat',R); % % Input and output arguments ([]'s are optional): % % mode (string) 'average' or 'best', defalut: 'average' % sM (struct) a map struct % C (vector) number of clusters % [initRGB] (string, matrix) a color code string accepted by SOM_COLORCODE % or an Mx3 matrix of RGB triples, where M is the number % of map units. Default: SOM_COLORCODEs default % [contrast] (string) 'flat', 'enhanced' color contrast mode, default: % 'enhanced'. % [R] (scalar) number of K-means trials, default: 30. % color (matrix) Mx3xC of RGB triples % centroid (array of matrices) centroid{i} includes codebook for the best % k-means for C(i) clusters, i.e. the cluster centroids corresponding to % the color code color(:,:,i). % % The function gives a set of color codes for the SOM according to K-means % clustering. It has two operation modes: % % 'average': The idea of coloring is that the color of the units belonging to the same % cluster is the mean of the original RGB values (see SOM_COLORCODE) of the map units % belonging to the cluster (see SOM_CLUSTERCOLOR). The K-means clustering is made, % by default, 30 times and the resulting color codes are averaged for % each specified number of clusters C(i), i=1,...,k. In a way, the resulting averaged color % codes reflect the stability of the K-means clustering made on the map units. % % 'best': runs the k-means R times for C(i), i=1,...,n clusters as in previous mode, % but instead of averaging all the R color codes, it picks the one that corresponds to the % best k-means clustering for each C(i). The 'best' is the one with the lowest % quantization error. The result may differ from run to run. % % EXAMPLE % % load iris; % or any other map struct sM % color=som_kmeanscolor2('average',sM,[2:6]); % som_show(sM,'umat','all','color',color); % % See also SOM_KMEANS, SOM_SHOW, SOM_COLORCODE, SOM_CLUSTERCOLOR, SOM_KMEANSCOLOR % Contributed to SOM Toolbox 2.0, 2001 February by Johan Himberg % Copyright (c) by Johan Himberg % http://www.cis.hut.fi/projects/somtoolbox/ %%% Check number of inputs error(nargchk(3, 6, nargin)); % check no. of input args %%% Check input args & set defaults if ~vis_valuetype(mode,{'string'}), error('Mode must be a string.'); end switch lower(mode), case{'average','best'} ; otherwise error('Mode must be string ''average'' or ''best''.'); end if isstruct(sM) & isfield(sM,'type') & strcmp(sM.type,'som_map'), [tmp,lattice,msize]=vis_planeGetArgs(sM); munits=prod(msize); if length(msize)>2 error('Does not work with 3D maps.') end else error('Map struct required for the second input argument!'); end if ~vis_valuetype(C,{'1xn','nx1'}), error('Vector value expected for cluster number.'); end % Round C and check C=round(C(:)'); if any(C<2), error('Cluster number must be 2 or more.'); end % check initial color coding if nargin<4 | isempty(initRGB) initRGB=som_colorcode(sM); end % check contrast checking if nargin<5 | isempty(contrast), contrast='enhanced'; end if ~ischar(contrast), error('String input expected for input arg. ''contrast''.'); else switch lower(contrast) case {'flat','enhanced'} ; otherwise error(['''flat'' or ''enhanced'' expected for '... 'input argument ''contrast''.']); end end if ischar(initRGB), try initRGB=som_colorcode(sM,initRGB); catch error(['Color code ' initRGB ... 'was not recognized by SOM_COLORCODE.']); end elseif vis_valuetype(initRGB,{'nx3rgb',[munits 3]},'all'), ; else error(['The initial color code must be a string '... 'or an Mx3 matrix of RGB triples.']); end if nargin<6|isempty(R), R=30; end if ~vis_valuetype(R,{'1x1'}), error('''R'' must be scalar.'); end %%% Action %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% disp('Wait...'); index=0; hit_=zeros(munits,munits); switch mode, %% Averaged k-means coloring case 'average' for k=C, disp(['Running K-means for ' num2str(k) ' clusters...']); color_=zeros(munits,3); colord_=color_; % Average R k-means colorings for C clusters for j=1:R, [dummy,c]=som_kmeans('batch',sM,k,100,0); % max 100 iterations, verbose off color_=color_+som_clustercolor(sM,c,initRGB); end index=index+1; color(:,:,index)=color_./R; end %% coloring for 'best' k-means coloring case 'best' for k=C, disp(['Running K-means for ' num2str(k) ' clusters...']); c=[];err=Inf; div=[]; %% look for the best k-means among R trials for i=1:R, [c_,div_,err_(i)]=som_kmeans('batch',sM,k,100,0); % max 100 iterations, verbose off if err_(i)<err, err=err_(i); c=c_; div=div_; end end % record the 'best' k-means for C clusters index=index+1; color(:,:,index)=som_clustercolor(sM,div,initRGB); centroid{index}=c; end end %%% Build output switch contrast case 'flat' ; case 'enhanced' warning off; ncolor=maxnorm(color); ncolor(~isfinite(ncolor))=color(~isfinite(ncolor)); color=ncolor; warning on; end %%% Subfunctions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function X=maxnorm(x) % normalize columns of x between [0,1] x=x-repmat(min(x),[size(x,1) 1 1]); X=x./repmat(max(x),[size(x,1) 1 1]);