Mercurial > hg > camir-aes2014
view toolboxes/MIRtoolbox1.3.2/somtoolbox/som_fuzzycolor.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [color,X]=som_fuzzycolor(sM,T,R,mode,initRGB,S) % SOM_FUZZYCOLOR Heuristic contraction projection/soft cluster color coding for SOM % % function [color,X]=som_fuzzycolor(map,[T],[R],[mode],[initRGB],[S]) % % sM (map struct) % [T] (scalar) parameter that defines the speed of contraction % T<1: slow contraction, T>1: fast contraction. Default: 1 % [R] (scalar) number of rounds, default: 30 % [mode] (string) 'lin' or 'exp', default: 'lin' % [initRGB] (string) Strings accepted by SOM_COLORCODE, default: 'rgb2' % [S] (matrix) MxM matrix a precalculated similarity matrix % color (matrix) of size MxRx3 resulting color codes at each step % X (matrix) of size MxRx2 coordiantes for projected unit weight vectors % at each step of iteration. (Color code C is calculated using this % projection.) % % The idea of the projection is to use a naive contraction model which % pulls the units together. Units that are close to each other in the % output space (clusters) contract faster into the same point in the % projection. The original position for each unit is its location in % the topological grid. % % This is an explorative tool to color code the map units so that % similar units (in the sense of euclidean norm) have similar coloring % (See also SOM_KMEANSCOLOR) The tool gives a series of color codings % which start from an initial color coding (see SOM_COLORCODE) and % show the how the fuzzy clustering process evolves. % % The speed of contraction is controlled by the input parameter T. If % it is high the projection contracts more slowly and reveals more % intermediate stages (hierarchy). A good value for T must be % searched manually. It is probable that the default values do not % yield good results. % % The conatrction process may be slow. In this case the mode can be % set to 'exp' instead of 'lin', however, then the computing becomes % heavier. % % EXAMPLE % % load iris; % or any other map struct sM % [color]=som_fuzzycolor(sM,'lin',10); % som_show(sM,'color',color); % % See also SOM_KMEANSCOLOR, SOM_COLORCODE, SOM_CLUSTERCOLOR % % REFERENCES % % Johan Himberg, "A SOM Based Cluster Visualization and Its % Application for False Coloring", in Proceedings of International % Joint Conference on Neural Networks (IJCNN2000)}, % pp. 587--592,Vol. 3, 2000 % % Esa Alhoniemi, Johan Himberg, and Juha Vesanto, Probabilistic % Measures for Responses of Self-Organizing Map Units, pp. 286--290, % in Proceedings of the International ICSC Congress on Computational % Intelligence Methods and Applications (CIMA '99)}, ICSC Academic % Press}, 1999 % % Outline of the heuristic % % First a matrix D of squared pairwise euclidean distances % D(i,j)=d(i,j)^2 between map weight vectors is calculated. This % matrix is transformed into a similarity matrix S, % s(i,j)=exp(-(D(i,j)/(T.^2*v)), where T is a free input parameter and % v the variance of all elements of D v=var(D(:)). The matrix is % further normalized so that all rows sum to one. The original % topological coordinates X=som_unit_coords(sM) are successively % averaged using this matrix. X(:,:,i)=S^i*X(:,:,1); As the process is % actually a series of successive weighted averagings of the initial % coordinates, all projected points eventually contract into one % point. T is a user defined parameter that defines how fast the % projection contracts into this center point. If T is too small, the % process will end into the center point at once. % % In practise, we don't calculate powers of S, but compute % % X(:,:,i)=S.*X(:,:,i-1); % mode: 'lin' % % The contraction process may be slow if T is selected to be large, % then for each step the similarity matrix is squared % % X(:,:,i)=S*X(:,:,1); S=S*S % mode: 'exp' % % The coloring is done using the function SOM_COLORCODE according to % the projections in X, The coordinates are rescaled in order to % achieve maximum color resolution. % Contributed to SOM Toolbox vs2, 2000 by Johan Himberg % Copyright (c) by Johan Himberg % http://www.cis.hut.fi/projects/somtoolbox/ % Previously rownorm function normalized the rows of S erroneously % into unit length, this major bug was corrected 14042003. Now the % rownorm normalizes the rows to have unit sum as it should johan 14042003 %% Check input arguments if isstruct(sM), if ~isfield(sM,'topol') error('Topology field missing.'); end M=size(sM.codebook,1); else error('Requires a map struct.'); end if nargin<2 | isempty(T), T=1; end if ~vis_valuetype(T,{'1x1'}) error('Input for T must be a scalar.'); end if nargin<3 | isempty(R), R=30; end if ~vis_valuetype(R,{'1x1'}) error('Input for R must be a scalar.'); end if nargin < 4 | isempty(mode), mode='lin'; end if ~ischar(mode), error('String input expected for mode.'); else mode=lower(mode); switch mode case {'lin','exp'} ; otherwise error('Input for mode must be ''lin'' or ''exp''.'); end end if nargin < 5 | isempty(initRGB) initRGB='rgb2'; end if ischar(initRGB), try dummy=som_colorcode(sM,initRGB); catch error(['Color code ''' initRGB ''' not known, see SOM_COLORCODE.']); end else error('Invalid color code string'); end if nargin<6 | isempty(S), S=fuzzysimilarity(sM,1./T); end if ~vis_valuetype(S,{[M M]}), error('Similarity matrix must be a MunitsxMunits matrix.') end x = maxnorm(som_unit_coords(sM.topol.msize,sM.topol.lattice,'sheet')); x = x-repmat(mean(x),size(x,1),1); X(:,:,1)=x; color(:,:,1)=som_colorcode(x,'rgb2',1); %%% Actions for i=1:R, switch mode case 'exp' S=rownorm(S*S); tmpX=S*X(:,:,1); case 'lin' tmpX=S*X(:,:,i); end X(:,:,i+1)=tmpX; color(:,:,i+1)=som_colorcode(X(:,:,i+1),initRGB); end color(isnan(color))=0; function r=fuzzysimilarity(sM,p) % Calculate a "fuzzy response" similarity matrix % sM: map % p: sharpness factor d=som_eucdist2(sM,sM); v=std(sqrt(d(:))).^2; r=rownorm(exp(-p^2*(d./v))); r(~isfinite(r))=0; return; function X = rownorm(X) r = sum(X,2); X = X ./ r(:,ones(size(X,2),1)); return; function X = maxnorm(X) for i=1:size(X,2), r = (max(X(:,i))-min(X(:,i))); if r, X(:,i) = X(:,i) / r; end, end return;