Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/potentials/@cgpot/Old/simple_marginalize_pot.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function smallpot = marginalize_pot(bigpot, keep) % MARGINALIZE_POT Marginalize a cgpot onto a smaller domain. % smallpot = marginalize_pot(bigpot, keep) sumover = mysetdiff(bigpot.domain, keep); csumover = myintersect(sumover, bigpot.cdom); dsumover = myintersect(sumover, bigpot.ddom); dkeep = myintersect(keep, bigpot.ddom); ckeep = myintersect(keep, bigpot.cdom); %ns = sparse(1, max(bigpot.domain)); % must be full, so I is an integer ns = zeros(1, max(bigpot.domain)); ns(bigpot.ddom) = bigpot.dsizes; ns(bigpot.cdom) = bigpot.csizes; % sum(ns(csumover))==0 is like isempty(csumover) but handles observed nodes. % Similarly, prod(ns(dsumover))==1 is like isempty(dsumover) % Marginalize the cts parts. % If we are in canonical form, we stay that way, since moment form might not exist. % Besides, we would like to minimize the number of conversions. if sum(ns(csumover)) > 0 if bigpot.subtype == 'm' for i=1:bigpot.dsize bigpot.mom{i} = marginalize_pot(bigpot.mom{i}, ckeep); end else for i=1:bigpot.dsize bigpot.can{i} = marginalize_pot(bigpot.can{i}, ckeep); end end end % If we are not marginalizing over any discrete nodes, we are done. if prod(ns(dsumover))==1 smallpot = cgpot(dkeep, ckeep, ns, bigpot.can, bigpot.mom, bigpot.subtype); return; end % To marginalize the discrete parts, we must be in moment form. bigpot = cg_can_to_mom(bigpot); I = prod(ns(dkeep)); J = prod(ns(dsumover)); C = sum(ns(ckeep)); % Reshape bigpot into the form mu1(:,j,i), where i is in dkeep, j is in dsumover T1 = zeros(I,J); mu1 = zeros(C,J,I); Sigma1 = zeros(C,C,J,I); sum_map = find_equiv_posns(dsumover, bigpot.ddom); keep_map = find_equiv_posns(dkeep, bigpot.ddom); iv = zeros(1, length(bigpot.ddom)); % index vector for i=1:I keep_iv = ind2subv(ns(dkeep), i); iv(keep_map) = keep_iv; for j=1:J sum_iv = ind2subv(ns(dsumover), j); iv(sum_map) = sum_iv; k = subv2ind(ns(bigpot.ddom), iv); mom = struct(bigpot.mom{k}); % violate object privacy T1(i,j) = exp(mom.logp); if C > 0 % so mu1 and Sigma1 are non-empty mu1(:,j,i) = mom.mu; Sigma1(:,:,j,i) = mom.Sigma; end end end % Collapse the mixture of Gaussians coef = mk_stochastic(T1); % coef must be convex combination T2 = sum(T1,2); T2 = T2 + (T2==0)*eps; %if C > 0, disp('collapsing onto '); disp(leep); end mu = []; Sigma = []; mom = cell(1,I); for i=1:I if C > 0 [mu, Sigma] = collapse_mog(mu1(:,:,i), Sigma1(:,:,:,i), coef(i,:)); end logp = log(T2(i)); mom{i} = mpot(ckeep, ns(ckeep), logp, mu, Sigma); end smallpot = cgpot(dkeep, ckeep, ns, [], mom, 'm');