Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/learning/learn_struct_pdag_pc_constrain.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [pdag, G] = dn_learn_struct_pdag_pc_constrain(adj, cond_indep, n, k, varargin) % LEARN_STRUCT_PDAG_PC Learn a partially oriented DAG (pattern) using the PC algorithm % Pdag = learn_struct_pdag_pc_constrain(adj, cond_indep, n, k, ...) % % adj = adjacency matrix learned from dependency network P(i,j) = 1 => i--j; 0 => i j % n is the number of nodes. % k is an optional upper bound on the fan-in (default: n) % cond_indep is a boolean function that will be called as follows: % feval(cond_indep, x, y, S, ...) % where x and y are nodes, and S is a set of nodes (positive integers), % and ... are any optional parameters passed to this function. % %Output % pdag Partially directed graph % G Resulting adjacency graph prior to setting direction arrows % % The output P is an adjacency matrix, in which % P(i,j) = -1 if there is an i->j edge. % P(i,j) = P(j,i) = 1 if there is an undirected edge i <-> j % % The PC algorithm does structure learning assuming all variables are observed. % See Spirtes, Glymour and Scheines, "Causation, Prediction and Search", 1993, p117. % This algorithm may take O(n^k) time if there are n variables and k is the max fan-in, % but this is quicker than the Verma-Pearl IC algorithm, which is always O(n^n). % %% Example %% Given data in a comma separated, filename starting with the variable labels, then the data in rows. %% filename test.txt consists of: %% %% Earthquake,Burglar,Radio,Alarm,Call %% 1,2,2,2,1 %% 1,1,2,1,2 %% . . . %[CovMatrix, obs, varfields] = CovMat('test.txt',5); % %dn = zeros(5,5); %dn(1,2) = 1; % This was the known Markov blanket of the system that generated test.txt %dn(2,1) = 1; %dn(2,4) = 1; %dn(4,2) = 1; %dn(1,3) = 1; %dn(3,1) = 1; %dn(1,4) = 1; %dn(4,1) = 1; %dn(4,5) = 1; %dn(5,4) = 1; %dn(3,5) = 1; %loop r->c %dn(5,3) = 1; %loop c-r %dn(3,4) = 1; %dn(4,3) = 1; % %max_fan_in = 4; %alpha = 0.05; % %[pdag G] = learn_struct_pdag_pc_constrain(dn,'cond_indep_fisher_z', 5, max_fan_in, CovMatrix, obs, alpha); %% %% %% Gary Bradski, 7/2002 Modified this to take an adjacency matrix from a dependency network. sep = cell(n,n); ord = 0; done = 0; G = ones(n,n); G=setdiag(G,0); while ~done done = 1; [X,Y] = find(G); for i=1:length(X) x = X(i); y = Y(i); % nbrs = mysetdiff(myunion(neighbors(G, x), neighbors(G,y)), [x y]);%parents, children, but not self nbrs = mysetdiff(myunion(neighbors(adj, x), neighbors(adj,y)), [x y]);%parents, children, but not self if length(nbrs) >= ord & G(x,y) ~= 0 done = 0; SS = subsets(nbrs, ord, ord); % all subsets of size ord for si=1:length(SS) S = SS{si}; %if (feval(dsep,x,y,S,adj)) | (feval(cond_indep, x, y, S, varargin{:})) if feval(cond_indep, x, y, S, varargin{:}) %if isempty(S) % fprintf('%d indep of %d ', x, y); %else % fprintf('%d indep of %d given ', x, y); fprintf('%d ', S); %end %fprintf('\n'); % diagnostic %[CI, r] = cond_indep_fisher_z(x, y, S, varargin{:}); %fprintf(': r = %6.4f\n', r); G(x,y) = 0; G(y,x) = 0; adj(x,y) = 0; %make sure found cond. independencies are marked out adj(y,x) = 0; sep{x,y} = myunion(sep{x,y}, S); sep{y,x} = myunion(sep{y,x}, S); break; % no need to check any more subsets end end end end ord = ord + 1; end % Create the minimal pattern, % i.e., the only directed edges are V structures. pdag = G; [X, Y] = find(G); % We want to generate all unique triples x,y,z % This code generates x,y,z and z,y,x. for i=1:length(X) x = X(i); y = Y(i); Z = find(G(y,:)); Z = mysetdiff(Z, x); for z=Z(:)' if G(x,z)==0 & ~ismember(y, sep{x,z}) & ~ismember(y, sep{z,x}) %fprintf('%d -> %d <- %d\n', x, y, z); pdag(x,y) = -1; pdag(y,x) = 0; pdag(z,y) = -1; pdag(y,z) = 0; end end end % Convert the minimal pattern to a complete one, % i.e., every directed edge in P is compelled % (must be directed in all Markov equivalent models), % and every undirected edge in P is reversible. % We use the rules of Pearl (2000) p51 (derived in Meek (1995)) old_pdag = zeros(n); iter = 0; while ~isequal(pdag, old_pdag) iter = iter + 1; old_pdag = pdag; % rule 1 [A,B] = find(pdag==-1); % a -> b for i=1:length(A) a = A(i); b = B(i); C = find(pdag(b,:)==1 & G(a,:)==0); % all nodes adj to b but not a if ~isempty(C) pdag(b,C) = -1; pdag(C,b) = 0; %fprintf('rule 1: a=%d->b=%d and b=%d-c=%d implies %d->%d\n', a, b, b, C, b, C); end end % rule 2 [A,B] = find(pdag==1); % unoriented a-b edge for i=1:length(A) a = A(i); b = B(i); if any( (pdag(a,:)==-1) & (pdag(:,b)==-1)' ); pdag(a,b) = -1; pdag(b,a) = 0; %fprintf('rule 2: %d -> %d\n', a, b); end end % rule 3 [A,B] = find(pdag==1); % a-b for i=1:length(A) a = A(i); b = B(i); C = find( (G(a,:)==1) & (pdag(:,b)==-1)' ); % C contains nodes c s.t. a-c->ba G2 = setdiag(G(C, C), 1); if any(G2(:)==0) % there are 2 different non adjacent elements of C pdag(a,b) = -1; pdag(b,a) = 0; %fprintf('rule 3: %d -> %d\n', a, b); end end end