Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/bnt/examples/static/Models/mk_ideker_bnet.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function bnet = mk_ideker_bnet(CPD_type, p) % MK_IDEKER_BNET Make the Bayes net in the PSB'00 paper by Ideker, Thorsson and Karp. % % BNET = MK_IDEKER_BNET uses the boolean functions specified in the paper % "Discovery of regulatory interactions through perturbation: inference and experimental design", % Pacific Symp. on Biocomputing, 2000. % % BNET = MK_IDEKER_BNET('root') uses the above boolean functions, but puts a uniform % distribution on the root nodes. % % BNET = MK_IDEKER_BNET('cpt', p) uses random parameters drawn from a Dirichlet(p,p,...) % distribution. If p << 1, this is nearly deterministic; if p >> 1, this is nearly uniform. % % BNET = MK_IDEKER_BNET('bool') makes each CPT a random boolean function. % % BNET = MK_IDEKER_BNET('orig') is the same as MK_IDEKER_BNET. if nargin == 0 CPD_type = 'orig'; end n = 4; dag = zeros(n); dag(1,3)=1; dag(2,[3 4])=1; dag(3,4)=1; ns = 2*ones(1,n); bnet = mk_bnet(dag, ns); switch CPD_type case 'orig', bnet.CPD{1} = tabular_CPD(bnet, 1, [0 1]); bnet.CPD{2} = tabular_CPD(bnet, 2, [0 1]); bnet.CPD{3} = boolean_CPD(bnet, 3, 'inline', inline('x(1) & x(2)')); bnet.CPD{4} = boolean_CPD(bnet, 4, 'inline', inline('x(1) & ~x(2)')); case 'root', bnet.CPD{1} = tabular_CPD(bnet, 1, [0.5 0.5]); bnet.CPD{2} = tabular_CPD(bnet, 2, [0.5 0.5]); bnet.CPD{3} = boolean_CPD(bnet, 3, 'inline', inline('x(1) & x(2)')); bnet.CPD{4} = boolean_CPD(bnet, 4, 'inline', inline('x(1) & ~x(2)')); case 'bool', for i=1:n bnet.CPD{i} = boolean_CPD(bnet, i, 'rnd'); end case 'cpt', for i=1:n bnet.CPD{i} = tabular_CPD(bnet, i, p); end otherwise, error(['unknown type ' CPD_type]); end